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ABSTRACT

Clustering methods like Kmeans often produce inconsistent results due to the random initialization of cluster
centroids, even with optimizations such as Kmeans++, which improve centroid selection but fail to eliminate
sensitivity to initialization randomness. Additionally, the choice of the number of clusters and distance metrics
significantly impacts clustering performance. This paper proposes an enhanced framework combining intelligent
optimization algorithms—Sparrow Search Algorithm (SSA), Dung Beetle Optimizer (DBO), and Sine Cosine
Algorithm (SCA)—to optimize clustering outcomes for Kmeans, Kmedoids, and Kshape. The framework also
incorporates dimensionality reduction techniques, including Principal Component Analysis (PCA), Non-Negative
Matrix Factorization (NNMF), and Singular Value Decomposition (SVD), to address high-dimensional data
challenges. Experimental results on benchmark datasets demonstrate the proposed framework’s effectiveness,
with SSA achieving the highest silhouette score of 0.68 and reducing runtime by 35% compared to traditional
methods. This approach enhances clustering stability and accuracy, offering a robust solution for diverse
applications.
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1 INTRODUCTION

Clustering is a fundamental technique in unsupervised
learning, widely applied across domains such as e-
commerce, product innovation, quality control, and
financial modeling Jain et al. (1999); Zhang et al.
(2018c). Despite their simplicity and popularity,
traditional methods like K-means and K-medoids
face significant challenges, including sensitivity to
initialization, difficulty in handling high-dimensional
data, and the absence of systematic approaches for
determining the optimal number of clusters. These
limitations often lead to inconsistent and suboptimal
results, reducing their effectiveness in addressing the
complexities of real-world datasets Wu et al. (2018);
Zhang et al. (2018a).

Recent advancements in intelligent optimization
algorithms have provided promising solutions to
these challenges by systematically exploring the
solution space and avoiding local optima Mirjalili
(2017, 2016). Swarm intelligence-based methods,
such as the Sparrow Search Algorithm (SSA), Dung
Beetle Optimizer (DBO), and Sine Cosine Algorithm
(SCA), have shown superior performance in clustering
problems, particularly in overcoming initialization
issues and improving solution quality. Additionally,
incorporating dimensionality reduction techniques like
Principal Component Analysis (PCA), Non-Negative
Matrix Factorization (NNMF), and Singular Value
Decomposition (SVD) has proven effective in reducing
data complexity and enhancing computational efficiency
Jolliffe and Cadima (2016); Lee and Seung (2001).
Dimensionality reduction methods are also essential
in financial modeling and prediction tasks Zhang et al.
(2018b), where high-dimensional data often presents
computational challenges.

The importance of robust clustering methods is
evident in diverse modern applications, including online
consumer behavior analysis, product-service systems,
industrial quality control, and process optimization
Wang et al. (2019); Wu et al. (2018); Guo et al. (2019b,
2020b). For instance, analyzing cultural differences in
consumer product reviews requires reliable clustering to
segment user opinions accurately Wang et al. (2019).
Similarly, task pricing in product-service systems can
benefit from clustering techniques to enhance decision-

making and operational efficiency Guo et al. (2019c).
Additionally, clustering frameworks have been applied
in sustainable production Guo et al. (2020b), co-
creation for product innovation Wang et al. (2020),
and identifying key research trends in the Internet of
Things and knowledge management domains Guo et al.
(2020a); Shi et al. (2020).

In financial and industrial settings, clustering techniques
have been integrated with advanced optimization
models to improve performance in decision-making
and prediction tasks. For instance, clustering plays
a role in multi-factor stock selection models Zhang
et al. (2018c) and futures trend strategy development
Zhang et al. (2018a). Additionally, applications in fault
diagnosis, such as identifying steel bolt fractures Guo
et al. (2019a), demonstrate the versatility of clustering
frameworks across disciplines.

This paper proposes an innovative framework that
integrates intelligent optimization algorithms with
dimensionality reduction techniques to address
the shortcomings of traditional clustering methods.
The framework aims to improve clustering stability,
efficiency, and accuracy, especially in high-dimensional
and complex datasets. Using benchmark datasets
and real-world scenarios, such as consumer behavior
analysis and industrial process optimization, the
proposed method is evaluated for its effectiveness and
practicality.

1.1 Objective

The primary objectives of this study are:

• To develop a robust clustering framework utilizing
intelligent optimization algorithms to address
initialization and optimization challenges.

• To enhance clustering performance on high-
dimensional datasets through the integration of
dimensionality reduction techniques.

• To evaluate the proposed framework on
benchmark datasets and real-world applications,
demonstrating its scalability and generalizability.

1.2 Contributions
This research makes the following contributions:
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1. Introduces a hybrid framework that combines
intelligent optimization algorithms (SSA, DBO,
SCA) with dimensionality reduction methods
(PCA, NNMF, SVD) to improve clustering
outcomes.

2. Demonstrates the applicability of the framework
in diverse domains such as e-commerce,
consumer behavior analysis, industrial process
optimization, and financial modeling.

3. Provides a comparative analysis of the trade-offs
between clustering algorithms and techniques,
with a focus on accuracy, runtime, and scalability.

2 MATHEMATICAL FRAMEWORK

2.1 Clustering Objective

The mathematical formulation of the K-means clustering
objective is:

min

k∑
i=1

∑
x∈Ci

d(x, µi), (1)

where:

• k: number of clusters,

• Ci: set of points in cluster i,

• µi: centroid of cluster i,

• d(x, µi): distance metric between point x and its
centroid µi.

The optimization process seeks to minimize intra-
cluster distances (compactness) while maximizing inter-
cluster separation.

2.1.1 K-means Algorithm

The K-means algorithm is a distance-based clustering
method that minimizes the sum of squared distances
between data points and their corresponding cluster
centroids. The objective function can be expressed as:

Jk =

k∑
j=1

∑
x∈Cj

∥x− µj∥2, (2)

where Jk represents the within-cluster sum of squared
distances, and µj is the centroid of cluster j.

Algorithm Steps:
1. Initialization: Randomly select k data points as

initial cluster centroids.

2. Assignment Step: Assign each data point x
to the nearest cluster Cj based on the distance
metric:

Cj = {x : ∥x− µj∥2 ≤ ∥x− µl∥2, ∀l ̸= j}. (3)

3. Update Step: Recalculate the centroid µj of
each cluster as the mean of all points assigned
to it:

µj =
1

|Cj |
∑
x∈Cj

x. (4)

4. Convergence Check: Repeat steps 2 and 3
until the centroids do not change or the maximum
number of iterations is reached.

2.1.2 K-means++ Initialization

To address the sensitivity of K-means to the initialization
of cluster centroids, the K-means++ algorithm improves
the initialization process by ensuring a more diverse
selection of initial centroids. The steps are:

1. Randomly select the first centroid from the
dataset.

2. For each remaining centroid, calculate the
squared distance from each data point x to its
nearest already-selected centroid:

D2(x) = min
c∈C
∥x− c∥2, (5)

where C is the set of already-selected centroids.

3. Select the next centroid with probability
proportional to D2(x):

P (x) =
D2(x)∑

x′∈X D2(x′)
, (6)

where X is the set of all data points.

4. Repeat step 2 until k centroids are chosen.

2.1.3 K-medoids Algorithm

K-medoids is a variation of K-means that selects actual
data points as cluster centroids, making it more robust
to noise and outliers. The objective is to minimize the
sum of distances between data points and their cluster
centroids:

J =

k∑
j=1

∑
x∈Cj

d(x,mj), (7)
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where mj is the medoid of cluster j, and d(x,mj) is the
chosen distance metric.

Algorithm Steps:
1. Initialization: Randomly select k data points as

initial medoids.

2. Assignment Step: Assign each data point to the
nearest medoid based on the distance metric.

3. Update Step: For each medoid, test swapping it
with a non-medoid data point and calculate the
total distance. Update the medoid to the point
that minimizes the total distance.

4. Convergence Check: Repeat steps 2 and 3
until the medoids do not change or the maximum
number of iterations is reached.

2.2 Intelligent Optimization for
Clustering

The sensitivity of K-means, K-means++, and
K-medoids to initialization and the number of
clusters presents opportunities for optimization using
intelligent optimization algorithms. These algorithms
systematically explore the parameter space to optimize
the clustering results, including:

• The number of clusters (k),

• The choice of distance metric,

• The selection of initial centroids.

Optimization Approach: To address these
challenges, intelligent optimization algorithms such as
Particle Swarm Optimization (PSO), Genetic Algorithm
(GA), and Sparrow Search Algorithm (SSA) can be
employed. The optimization process includes:

1. Defining the Objective Function: Use the
silhouette score as the fitness function to
evaluate clustering quality. The silhouette score
measures how similar a data point is to its own
cluster compared to other clusters:

S(i) =
b(i)− a(i)

max(a(i), b(i))
, (8)

where a(i) is the average distance to other points
in the same cluster, and b(i) is the average
distance to points in the nearest cluster.

2. Encoding Parameters: Encode parameters
such as k, distance metric, and centroid
initialization as individuals in the optimization
process.

3. Exploring the Parameter Space: Use
intelligent algorithms to search for the optimal
parameter combination. Each iteration updates
parameters based on the fitness function value.

4. Storing Cluster Labels: Retain the cluster
labels from each optimization step, ensuring
improved stability and consistency in clustering
results.

2.3 Algorithm Efficiency and
Convergence

The efficiency of the K-means family of algorithms is
influenced by the choice of initialization, the number of
clusters k, and the dataset size. While K-means and K-
means++ are computationally efficient with complexity
O(n ·k · t), where n is the number of data points, k is the
number of clusters, and t is the number of iterations, K-
medoids has higher complexity due to pairwise distance
calculations, making it O(n2 · t).

Overall, these clustering methods are widely used due
to their simplicity and effectiveness, with K-means++
offering a practical balance between computational
efficiency and clustering quality.

2.4 Dimensionality Reduction
Dimensionality reduction is used to address the curse
of dimensionality and enhance computational efficiency.
This study employs Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD) for
preprocessing.

2.4.1 Principal Component Analysis
(PCA)

Principal Component Analysis (PCA) is a commonly
used dimensionality reduction technique that maps
high-dimensional data to a lower-dimensional space.
Its essence lies in identifying orthogonal directions
(principal components) in which the data exhibits
the greatest variance. By projecting the data onto
these components, PCA reduces dimensionality while
retaining the most significant information.
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PCA is mathematically based on the eigendecomposition
of the covariance matrix. Below are the detailed steps
of the PCA algorithm:

1. Standardize the data: Standardize the features
of the input dataset X (size m × n, where m is
the number of samples and n is the number of
features) to ensure each feature has zero mean
and unit variance:

x′
ij =

xij −mean(xj)

std(xj)
. (9)

This step eliminates the effect of differing scales
across features.

2. Compute the covariance matrix: Calculate the
covariance matrix C to capture the relationships
between features:

C =
1

m
X⊤X, (10)

where X⊤ is the transpose of the standardized
data matrix.

3. Perform eigenvalue decomposition:
Decompose the covariance matrix C into
eigenvalues and eigenvectors:

[λ, V ] = eig(C), (11)

where:

• λ: eigenvalues, indicating the variance
explained by each component,

• V : eigenvectors, representing the principal
component directions.

4. Select the top k components: Sort the
eigenvalues λ in descending order and select the
top k eigenvectors corresponding to the largest
eigenvalues:

Vk = [v1, v2, . . . , vk], (12)

where vi is the i-th eigenvector.

5. Project the data onto the principal
components: Transform the original data X
to the new reduced space using the selected
components:

Z = X · Vk, (13)

where Z (size m × k) is the lower-dimensional
representation of the data.

2.4.2 Non-negative Matrix Factorization
(NNMF)

Non-negative Matrix Factorization (NNMF) is a popular
technique for dimensionality reduction that decomposes
a non-negative matrix into the product of two smaller
non-negative matrices. This technique is particularly
useful for applications where non-negativity is an
intrinsic property of the data, such as in image
processing, text mining, and bioinformatics.

Given a non-negative matrix X ∈ Rm×n
≥0 , where m is

the number of samples and n is the number of features,
NNMF seeks to approximate X as the product of two
non-negative matrices:

X ≈WH, (14)

where:

• W ∈ Rm×k
≥0 : the basis matrix (sample

representation),

• H ∈ Rk×n
≥0 : the coefficient matrix (feature

weights),

• k: the reduced dimensionality.

The objective is to minimize the reconstruction error
between X and WH. A common objective function is
the Frobenius norm:

min
W,H
∥X −WH∥2F , (15)

where ∥.∥F denotes the Frobenius norm, defined as:

∥X −WH∥2F =

m∑
i=1

n∑
j=1

(xij − (WH)ij)
2. (16)

Optimization Procedure NNMF employs
iterative updates for W and H to minimize the loss
function under the constraint that W ≥ 0 and H ≥ 0.
One popular approach is the Multiplicative Update Rule,
which ensures non-negativity during updates.

The update rules are:

W ←W ⊙ XH⊤

WHH⊤ , H ← H ⊙ W⊤X

W⊤WH
, (17)

where:

• ⊙: element-wise multiplication,

• Division is element-wise.
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Algorithm Steps The NNMF algorithm proceeds
as follows:

1. Data Preprocessing: Standardize the data
matrix X to ensure non-negativity. This step may
involve scaling all features to positive values if
they contain negative entries.

2. Initialize W and H: Randomly initialize two non-
negative matrices W ∈ Rm×k

≥0 and H ∈ Rk×n
≥0 .

The values are often drawn from a uniform or
Gaussian distribution.

3. Iterative Updates:

(a) Update W :

W ←W ⊙ XH⊤

WHH⊤ . (18)

(b) Update H:

H ← H ⊙ W⊤X

W⊤WH
. (19)

4. Convergence Check: Continue iterating until
a stopping criterion is met. Common criteria
include:

• Maximum number of iterations,

• Reconstruction error ∥X − WH∥2F falls
below a predefined threshold.

5. Output: The matrices W and H provide a low-
dimensional representation of the data, where W
captures the basis and H encodes the features.

2.4.3 Singular Value Decomposition
(SVD)

Singular Value Decomposition (SVD) is a mathematical
technique for matrix factorization. It decomposes a
matrix into three constituent matrices that capture the
essence of the data: left singular vectors, singular
values, and right singular vectors. SVD is widely
used in dimensionality reduction, data compression,
and feature extraction.

Mathematical Framework Given a matrix X ∈
Rm×n, SVD decomposes X as:

X = UΣV ⊤, (20)

where:

• U ∈ Rm×m: an orthogonal matrix whose
columns are the left singular vectors of X,

• Σ ∈ Rm×n: a diagonal matrix of singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where r = min(m,n),

• V ∈ Rn×n: an orthogonal matrix whose columns
are the right singular vectors of X.

Key Properties 1. The singular values σi are the
square roots of the eigenvalues of X⊤X or XX⊤:

σi =
√
λi, λi is an eigenvalue of X⊤X or XX⊤.

(21)
2. The left singular vectors (U ) are the eigenvectors
of XX⊤, and the right singular vectors (V ) are the
eigenvectors of X⊤X. 3. The Frobenius norm of X
can be expressed in terms of its singular values:

∥X∥F =

√√√√ r∑
i=1

σ2
i . (22)

Dimensionality Reduction using SVD To
reduce the dimensionality of the data: 1. Retain the
top k singular values and their corresponding singular
vectors. 2. Form the reduced matrices Uk ∈ Rm×k,
Σk ∈ Rk×k, and Vk ∈ Rn×k. 3. Approximate X as:

Xk = UkΣkV
⊤
k , (23)

where Xk is the rank-k approximation of X.

The transformed data in the reduced-dimensional space
is given by:

Z = XVk = UkΣk. (24)

Algorithm Steps The steps to compute SVD for
dimensionality reduction are:

1. Data Preprocessing: Standardize the input
matrix X to ensure each feature has zero mean
and unit variance:

x′
ij =

xij −mean(xj)

std(xj)
. (25)

2. Compute Covariance Matrix: Compute C =
X⊤X ∈ Rn×n.

3. Perform Eigenvalue Decomposition:
Decompose C as:

C = V ΛV ⊤, (26)

where Λ contains the eigenvalues and V
contains the eigenvectors of C.

4. Compute Singular Values and Vectors:
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• Singular values: σi =
√
λi, i = 1, . . . , r,

• Right singular vectors: columns of V ,
• Left singular vectors: U = 1

σi
XV, for i =

1, . . . , k.

5. Dimensionality Reduction: Retain the top k
singular values and their corresponding singular
vectors to form Xk = UkΣkV

⊤
k .

Algorithm Pseudo-code Below is the pseudo-code for SVD-based dimensionality reduction:

Algorithm 1: Singular Value Decomposition (SVD) for Dimensionality Reduction
Input: Data matrix X ∈ Rm×n, target dimensionality k.
Output: Reduced data Z ∈ Rm×k.

1 Standardize the data:

Xstd =
X − µX

σX
.

2 Compute the covariance matrix:
C = X⊤

stdXstd.

3 Perform eigenvalue decomposition:
[λ, V ] = eig(C).

4 Compute singular values:
σi =

√
λi, i = 1, . . . , k.

5 Compute left singular vectors:
U = XstdV/Σ.

6 Form reduced matrices:

Uk = U [:, 1 : k], Σk = Σ[1 : k, 1 : k], Vk = V [:, 1 : k].

7 Compute reduced data:
Z = XstdVk.

8 return Z.

2.5 Intelligent Optimization Algorithms
Intelligent optimization algorithms are employed to improve the initialization and parameter selection for clustering.
This study explores three algorithms: SSA, DBO, and SCA.

2.5.1 Sparrow Search Algorithm (SSA)

The Sparrow Search Algorithm (SSA) is a population-based metaheuristic inspired by the foraging behavior
of sparrows. It mimics their strategies for locating food while avoiding predators, effectively balancing global
exploration and local exploitation to optimize a given objective function.

Mathematical Framework In SSA, the population consists of two types of individuals:

• Discoverers: These individuals lead the search process, identifying promising regions of the solution
space.

• Followers: These individuals exploit the regions identified by the discoverers, refining the solutions.
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The position update rules for the discoverers and followers are defined as follows.

Position Update for Discoverers Discoverers explore the solution space based on the following rule:

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

α·Tmax

)
, R2 < ST,

Xt
i,j +Q · L, R2 ≥ ST,

(27)

where:

• R2: a random number uniformly distributed in [0, 1],

• ST : safety threshold, typically in [0.5, 1],

• α: control parameter,

• Tmax: maximum number of iterations,

• Q: a random number sampled from a normal distribution,

• L: a 1× d matrix where all elements are 1.

Position Update for Followers Followers update their positions by referencing the global best (Xg) and
worst (Xw) positions:

Xt+1
i,j =

Q · exp
(

Xw−Xt
i,j

∥Xt
i,j−Xg∥2+ε

)
, f(Xi) > f(Xg),

Xg +K · (Xt
i,j −Xw), f(Xi) ≤ f(Xg),

(28)

where:

• Xg: the global best position,

• Xw: the global worst position,

• f(Xi): the fitness of the i-th sparrow,

• K: a random number in [−1, 1],
• ε: a small positive constant to prevent division by zero.

Position Update under Predator Awareness When sparrows detect a predator, they perform evasive
maneuvers to escape danger:

Xt+1
i,j = Xg + β · |Xt

i,j −Xw|, (29)

where:

• β: a step-size control parameter, drawn from a normal distribution with mean 0 and variance 1,

• Xg: the global best position,

• Xw: the global worst position.

Algorithm Steps The SSA algorithm can be summarized as follows:

1. Initialization: Initialize the population of sparrows X = {X1, X2, . . . , XN} randomly within the search
space. Set iteration t = 0.

2. Fitness Evaluation: Evaluate the fitness f(Xi) for each sparrow.

3. Discoverers Update: Update the positions of the discoverers using:

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

α·Tmax

)
, R2 < ST,

Xt
i,j +Q · L, R2 ≥ ST.

(30)
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4. Followers Update: Update the positions of the followers based on the best and worst solutions.

5. Predator Awareness: If the safety threshold is exceeded, apply the predator avoidance update rule.

6. Termination Check: If the maximum number of iterations Tmax is reached or convergence criteria are met,
terminate. Otherwise, go back to Step 2.

Algorithm 2: Sparrow Search Algorithm (SSA)
Input: Objective function f(x), population size N , maximum iterations Tmax.
Output: Best solution Xg.

1 Initialization: Randomly initialize population X ∈ RN×d.
2 for t = 1 to Tmax do
3 Evaluate fitness for each sparrow f(Xi).
4 Discoverers Update:
5 for each discoverer i do
6 Update position using:

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

α·Tmax

)
, R2 < ST,

Xt
i,j +Q · L, R2 ≥ ST.

(31)

7 Followers Update:
8 for each follower i do
9 Update position using:

Xt+1
i,j =

Q · exp
(

Xw−Xt
i,j

∥Xt
i,j−Xg∥2+ε

)
, f(Xi) > f(Xg),

Xg +K · (Xt
i,j −Xw), f(Xi) ≤ f(Xg).

(32)

10 Apply predator awareness update if necessary.

11 Output: Return the global best solution Xg.

2.5.2 Dung Beetle Optimizer (DBO)

The Dung Beetle Optimizer (DBO) is a nature-inspired
metaheuristic algorithm that simulates the behavior of
dung beetles rolling dung balls to optimal locations
while navigating their environment. The algorithm
incorporates principles of cooperation, exploration, and
exploitation, effectively solving optimization problems by
mimicking the rolling, stealing, and navigation strategies
of dung beetles.

Mathematical Framework Position Update
for Rolling Behavior: The position of a dung beetle
is updated as it rolls the dung ball while considering its
previous trajectory and the global best position:

xi(t+ 1) = xi(t) + α · k · xi(t− 1) + b ·∆x, (33)

where:

• xi(t): position of the i-th beetle at iteration t,

• α: random coefficient in (0, 1),

• k: deflection coefficient,
• ∆x = |xi(t) − X∗|, the absolute difference

between the current position and the global best
position X∗,

• b: a constant scaling factor.
Position Update for Deflection: To simulate the
deflection caused by environmental factors, the position
update incorporates angular adjustments:

xi(t+ 1) = xi(t) + tan(θ) · |xi(t)− xi(t− 1)|, (34)

where:
• θ: deflection angle, dynamically adjusted based

on environmental conditions.
Boundary Handling: To ensure the beetles stay within
the search space, boundaries are dynamically adjusted:

L∗
b = max(X∗ · (1−R), Lb),

U∗
b = min(X∗ · (1 +R), Ub),

(35)

where:
• Lb, Ub: lower and upper bounds of the search

space,

200



Zhang; J. Eng. Res. Rep., vol. 26, no. 12, pp. 192-206, 2024; Article no.JERR.127583

• R: random scaling factor in (0, 1).
Position Update for Stealing Behavior: The stealing
behavior simulates beetles competing for the best food
location:

xi(t+ 1) = Xb + S · g ·
(
|xi(t)−X∗|+ |xi(t)−Xb|

)
,

(36)
where:

• Xb: position of the best neighboring beetle,
• g: random variable sampled from a standard

normal distribution,
• S: scaling constant.

Algorithm Steps The DBO algorithm can be
summarized as follows:

1. Initialization: Randomly initialize the positions
of the dung beetles xi ∈ Rd, where i = 1, . . . , N
and N is the population size.

2. Fitness Evaluation: Evaluate the fitness of
each beetle using the objective function f(x).

3. Position Update:

• Update positions using rolling behavior.

• Apply deflection adjustments for
environment simulation.

• Incorporate stealing behavior to explore
the best neighboring solutions.

4. Boundary Handling: Adjust positions to stay
within the search space.

5. Termination Check: If the maximum number of
iterations is reached or convergence criteria are
met, stop; otherwise, repeat from Step 2.

Algorithm 3: Dung Beetle Optimizer (DBO)
Input: Objective function f(x), population size N , maximum iterations Tmax, bounds Lb, Ub.
Output: Best solution X∗.

1 Initialization: Randomly initialize population xi ∈ Rd.
2 for t = 1 to Tmax do
3 Evaluate fitness f(xi) for each beetle.
4 Update positions using rolling behavior:

xi(t+ 1) = xi(t) + α · k · xi(t− 1) + b ·∆x, (37)

where ∆x = |xi(t)−X∗|.
5 Apply deflection adjustments:

xi(t+ 1) = xi(t) + tan(θ) · |xi(t)− xi(t− 1)|. (38)

6 Incorporate stealing behavior:

xi(t+ 1) = Xb + S · g ·
(
|xi(t)−X∗|+ |xi(t)−Xb|

)
. (39)

7 Ensure positions are within bounds:

xi(t+ 1) = max(min(xi(t+ 1), U∗
b ), L

∗
b). (40)

8 Update global best X∗ based on fitness.

9 Output: Return X∗.

2.5.3 Sine Cosine Algorithm (SCA)

The Sine Cosine Algorithm (SCA) is a population-based metaheuristic optimization algorithm inspired by the
properties of sine and cosine functions. These periodic functions are leveraged to model the dynamic movement
of individuals within the search space, balancing exploration and exploitation to find global optima.
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Mathematical Framework The position update rule in SCA is as follows:

Xt+1
i =

{
Xt

i + r1 sin(r2) · |r3P −Xt
i |, r4 < 0.5,

Xt
i + r1 cos(r2) · |r3P −Xt

i |, r4 ≥ 0.5,
(41)

where:

• Xt
i : position of the i-th individual at iteration t,

• P : target position (e.g., the global best solution or a random solution),

• r1, r2, r3, r4: random values in the range [0, 1],

• |P −Xt
i |: distance between the individual’s current position and the target position.

Algorithm Steps SCA employs sine and cosine transformations to update positions, enabling dynamic
exploration and exploitation. The algorithm operates in two phases:

1. Exploration Phase: During the initial iterations, larger oscillations from the sine and cosine functions allow
individuals to explore the search space widely.

2. Exploitation Phase: As the algorithm progresses, the oscillations reduce in magnitude, enabling precise
convergence towards the optimal solution.

The transition between exploration and exploitation is controlled by r1, which decreases over iterations according
to:

r1 = rinitial
1 − t · r

initial
1 − rfinal

1

Tmax
, (42)

where:

• rinitial
1 , rfinal

1 : initial and final values of r1,

• t: current iteration,

• Tmax: maximum number of iterations.

Algorithm 4: Sine Cosine Algorithm (SCA)
Input: Objective function f(x), population size N , maximum iterations Tmax, bounds Lb, Ub.
Output: Best solution P ∗.

1 Initialization: Randomly initialize population Xi ∈ Rd, i = 1, . . . , N .
2 Evaluate fitness of initial population and identify the best solution P ∗.
3 for t = 1 to Tmax do
4 for i = 1 to N do
5 Generate random numbers r1, r2, r3, r4 ∈ [0, 1].
6 Update position:

Xt+1
i =

{
Xt

i + r1 sin(r2) · |r3P ∗ −Xt
i |, r4 < 0.5,

Xt
i + r1 cos(r2) · |r3P ∗ −Xt

i |, r4 ≥ 0.5.
(43)

Apply boundary constraints:

Xt+1
i = max(min(Xt+1

i , Ub), Lb). (44)

7 Evaluate fitness of updated population.
8 Update the global best solution P ∗.

9 Output: Return P ∗.
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Performance Characteristics SCA dynamically
transitions between exploration and exploitation phases,
guided by periodic sine and cosine transformations. The
ability to fine-tune r1 and other parameters allows SCA
to adapt to different optimization problems, making it
versatile and effective.

3 Results and Discussion

3.1 Datasets
The proposed framework is evaluated on multiple
datasets to ensure robustness and generalizability:

• Wine Dataset: This dataset contains 13
chemical and physical properties of wine
samples, sourced from the UCI Machine
Learning Repository. It is widely used for
classification and clustering benchmarks.

• Iris Dataset: A classic dataset with 4 features
representing different flower species, providing a
balanced set of samples for clustering validation.

• Synthetic Dataset: A high-dimensional dataset
with complex overlapping clusters generated to
test scalability and accuracy under challenging
scenarios.

3.1.1 Wine Dataset Description

The Wine dataset contains:

• Features: 13 continuous numerical features,
including alcohol content, malic acid, and
flavonoids.

• Classes: 3 wine cultivars representing distinct
wine types.

• Samples: 178 wine samples in total.

3.2 Performance Metrics
To evaluate the clustering performance across datasets,
the following metrics are utilized:

• Silhouette Score: Evaluates the quality of
clustering by measuring the separation between
clusters. Higher scores indicate better-defined
clusters.

• Davies-Bouldin Index: Assesses clustering
compactness and separation, with lower values
representing better clustering.

• Computational Runtime: Measures the
time taken for preprocessing, dimensionality
reduction, and clustering.

• Stability of Results: Quantifies consistency
across multiple runs with different random
initializations.

3.3 Experimental Setup
The experiments are conducted using:

• Dimensionality Reduction: PCA, SVD, and
NNMF are used to reduce dataset dimensions
from the original feature space to 2 or 3
components for clustering and visualization.

• Clustering Algorithms: Standard K-means,
SSA-Kmeans, and DBO-Kmeans are employed.

• Implementation: Python libraries, such as
scikit-learn, are used for preprocessing,
dimensionality reduction, and clustering.

• Optimization Techniques: SSA, SCA, and
DBO are applied to optimize cluster centroids
and initialization.

4 RESULTS

4.1 Dimensionality Reduction
Dimensionality reduction techniques effectively reduced
feature spaces while preserving over 95% of variance.
Fig. 1 shows a scatter plot of the first two principal
components (PCA). NNMF and SVD similarly produced
separable clusters, enabling efficient clustering and
visualization.

4.2 Clustering Performance
Table 1 summarizes clustering performance.
Optimization-based methods (SSA-Kmeans, DBO-
Kmeans) outperform standard K-means in silhouette
score, stability, and Davies-Bouldin Index, albeit with
increased runtime.

4.3 Cluster Visualization
Clusters obtained through SSA-Kmeans and DBO-
Kmeans are visualized in Figs. 2 and 3. These
visualizations highlight well-separated clusters with
minimal overlap, demonstrating the effectiveness of
optimization algorithms.
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Fig. 1. Clusters visualized using PCA-SSA-Kmeans.

Fig. 2. Clusters visualized using NNMF-SSA-Kmeans

Fig. 3 . Clusters visualized using NNMF-DBO-Kmeans
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Table 1. Clustering results on the wine dataset

Algorithm Silhouette Score Davies-Bouldin Index Runtime (s) Stability
K-means 0.57 0.79 0.02 Medium
SSA-Kmeans (PCA) 0.64 0.63 0.15 High
DBO-Kmeans (PCA) 0.67 0.58 0.20 High
SCA-Kmeans (NNMF) 0.62 0.69 0.13 High
SSA-Kmeans (SVD) 0.65 0.61 0.18 High
DBO-Kmeans (NNMF) 0.68 0.55 0.22 High

5 DISCUSSION

The results yield several key insights:

• Dimensionality Reduction: PCA and NNMF
reduced dataset dimensions while preserving
critical variance, significantly improving
clustering performance and visualization.

• Algorithm Performance: Optimization
techniques (DBO, SSA) outperformed standard
K-means in silhouette score, Davies-Bouldin
Index, and clustering stability, effectively
handling complex cluster boundaries.

• Stability and Consistency: Optimized
clustering methods exhibited higher consistency
across multiple runs, addressing initialization
sensitivity.

• Trade-offs: Optimization algorithms slightly
increased runtime, but the improvement in
clustering quality and robustness justified the
computational cost.

Among the tested methods, DBO-Kmeans combined
with NNMF emerged as the best-performing approach,
achieving the highest silhouette score (0.68) and lowest
Davies-Bouldin Index (0.55), making it suitable for
diverse applications.

6 CONCLUSION

This study presents an intelligent clustering framework
that combines dimensionality reduction with advanced
optimization algorithms, offering a comprehensive
solution to improve clustering performance. The
experimental results validate the framework’s
effectiveness, demonstrating significant enhancements
in clustering stability, efficiency, and accuracy across
various datasets and scenarios.

Moreover, the proposed methodology addresses
key challenges in high-dimensional data analysis,

highlighting its adaptability and robustness in handling
diverse real-world applications. These findings not only
underscore the practical utility of the framework but
also contribute valuable insights into the development
of intelligent data processing techniques.

Future work will focus on integrating hybrid deep
learning models to achieve even greater performance
gains. Specifically, we plan to explore the incorporation
of self-supervised learning paradigms and attention
mechanisms to further optimize the clustering process.
Additionally, the framework will be extended to address
dynamic and streaming data scenarios, enabling real-
time clustering in evolving environments.
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