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ABSTRACT 
 

Time Series Forecasting (TSF) involves predicting future values and trends of data at specific points 
or periods by analyzing historical patterns, such as trends and seasonality. With the advent of IoT 
sensors, traditional machine learning approaches struggle to handle massive time series datasets. 
Recently, deep learning algorithms, exemplified by convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), and Transformer models, have made significant progress in time series 
forecasting tasks. This paper reviews the common features of time series data, relevant datasets, 
and evaluation metrics for models. It also conducts experimental comparisons of various forecasting 
algorithms, focusing on time and algorithmic architectures. This paper conducts prediction 
experiments on several deep learning models using the ETT dataset and presents the final results. 
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We evaluate model performance using metrics like Mean Absolute Error (MAE) and Mean Squared 
Error (MSE). We highlight the strengths and weaknesses of deep learning-based TSF methods. 
Major deep learning-based time series forecasting methods are introduced and compared. Finally, 
challenges and future research directions in applying deep learning to time series forecasting are 
discussed. 
 

 
Keywords: Deep learning; time series forecasting; recurrent neural networks; gated recurrent units; 

transformer model. 

 
1. INTRODUCTION 
 
Time series data exist widely in domains like 
finance, healthcare, energy, transportation, and 
meteorology and are easily accessible. However, 
with the widespread use of sensing devices and 
advancements in data processing, time series 
data are being generated at an explosive rate. 
Analyzing these data is crucial for extracting 
valuable information, such as weather 
predictions, traffic flow forecasts, financial 
analysis, flu trend monitoring, medical 
responses, and system workload management 
(Eslin & Agon, 2012). 

 
Time Series Forecasting is a critical tool for 
making predictions based on historical data that 
is collected over time. By leveraging various 
statistical and machine learning models, 
businesses and researchers can predict future 
events, trends, and behaviors in areas ranging 
from finance to weather forecasting. While 
traditional machine learning methods (like 
decision trees, random forests, and linear 
regression) can be applied to time series 
forecasting, they face significant challenges due 
to the unique nature of time series data, including 
temporal dependence, seasonality, non-
stationarity, and the need for careful feature 
engineering. These methods often require 
substantial preprocessing and feature 
engineering to capture the temporal patterns. 
Specifically, traditional statistical models, such as 
Support Vector Machines (SVM) and 
Autoregressive Models (AR), require                  
manual configuration of seasonal and trend 
components (Gers et al., 2000; Durbin & 
Koopman, 2012), limiting their efficiency and 
accuracy with large-scale datasets. Deep                
neural networks (DNNs) offer an alternative               
due to their ability to extract high-level                
features and identify complex patterns within and 
across time series with minimal manual effort. 
However, DNNs require extensive training data 
due to their reliance on fewer structural 
assumptions. 

Convolutional Neural Networks (CNNs), as one 
of the most representative network architectures 
in deep learning (Shaowei et al., 2023), hold 
broad application prospects in this field. 
Compared to traditional methods, CNNs 
demonstrate superior capabilities in feature 
extraction and information mining. While CNNs 
are highly effective for processing image data, 
they face limitations when applied to time series 
data, such as sequences, speech, and text. 
Specifically, CNNs struggle to capture long-range 
dependencies in time series. Although increasing 
the depth of convolutional layers can expand the 
receptive field, it often remains insufficient for 
modeling long-term dependencies within 
sequences. In 1990, Jeffrey Elman introduced 
the foundational concept and structure of 
Recurrent Neural Networks (RNNs) in his paper 
Finding Structure in Time. Elman's model 
introduced the concept of a hidden layer (or 
internal state), which stores information about 
previous elements in a sequence and uses it to 
predict the next element. This breakthrough 
opened the door for RNN applications in natural 
language processing, time series analysis, and 
other domains. Subsequently, RNNs evolved to 
address issues like vanishing and exploding 
gradients in long-sequence processing through 
variants such as Long Short-Term Memory 
(LSTM) networks and Gated Recurrent Units 
(GRU). In 2017, Vaswani et al. proposed the 
Transformer architecture, introducing the self-
attention mechanism—a key innovation that 
enables exceptional performance in                
processing sequence data. The Transformer's 
self-attention mechanism captures long-term 
dependencies, addressing limitations of 
traditional RNNs in long-range prediction and 
parallel computation. As a result, Transformers 
have achieved remarkable performance in time 
series forecasting tasks. 
 

In modern domains, time series forecasting 
methods are already well-established. For 
instance, Facebook's visual interactive network 
(VIN) employs bidirectional LSTM to effectively 
capture temporal information in videos (Michael 
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et al., 2024). Chinese researchers have also 
achieved significant results in tasks such as 
image captioning and video classification. For 
example, the Chinese Academy of Sciences 
proposed the spatio-temporal attention network 
(STAN), which uses bidirectional GRU to 
enhance video classification accuracy (Hanen et 
al., 2024). Photovoltaics (PV), one of the most 
promising renewable energy sources, requires 
accurate power forecasting to ensure the safe 
operation and economic integration of PV 
systems in smart grids. Mohamed Abdel-Nasser 
et al. proposed an LSTM-RNN-based method for 
predicting PV system output power, providing a 
useful tool for smart grid planning and control 
(Abdel-Nasser & Mahmoud, 2019; Qiang et al., 
2020). Qiang Cui et al. introduced a Multi-View 
Recurrent Neural Network (MV-RNN) model to 
handle sequence recommendations and cold-
start issues. By integrating visual and textual 
information, MV-RNN mitigates cold-start 
problems, dynamically captures user interests, 
generates personalized ranking lists, addresses 
missing modality issues, and alleviates cold-start 
challenges (Qiang et al., 2020). Shaowei Pan et 
al. proposed a hybrid model (CNN-LSTM-SA), 
combining Convolutional Neural Networks 
(CNNs), LSTM networks, and self-attention 
mechanisms (SA). This model achieved optimal 
performance in capturing fundamental trends and 
predicting specific values for oil well production 
(Shaowei et al., 2023). In the field of speech 
recognition, RNNs and their variants have 
achieved significant breakthroughs. For  
example, Microsoft's deep neural network (DNN) 
combined with LSTM demonstrated excellent 
performance in speech recognition competitions. 
Domestic companies such as iFLYTEK and 
Sogou have also adopted RNN-based 
technologies to improve speech recognition 
accuracy (Fang et al., 2021). In hydrological time 
series forecasting, Muhammad Waqas et al. 
demonstrated the effectiveness of RNNs and 
LSTMs in modeling nonlinear and time-varying 
hydrological systems, making them a research 
hotspot (Waqas & Humphries, 2024. The 
Transformer's self-attention mechanism excels in 
capturing long-range dependencies, offering 
superior temporal modeling capabilities and 
advantages in handling time series data (Wen et 
al., 2023). Liu et al. proposed a de-stationary 
framework to address over-stabilization issues in 
processing raw time series data (Liu et al., 2022). 
Additionally, Liu et al. recently introduced an 
inverted input approach that reassigns roles 
between the attention module and the 
feedforward neural network (Liu et al., 2024), 

effectively enhancing SOTA model performance. 
In 2023, Zhang et al.  proposed a multi-scale 
pyramid Transformer model called MTPNet 
(Zhang et al., 2024). The use of multi-layer 
Transformer structures with different scales has 
solved the problem of time dependent modeling 
for fixed or constrained scales. Some studies, 
such as the BERT model, adopt learnable 
position encodings to learn positional 
embeddings from time series through training. 
For instance, Jin et al., (2021) proposed the 
TrafficBERT model for traffic flow prediction. 
Additionally, Li et al., (2019) replaced traditional 
position encodings with learnable position 
embeddings in the LogSparse Transformer. In 
2021, Wu et al., (2021) introduced the 
Autoformer model, which is a self-correlation 
decomposition Transformer for long-term 
forecasting. Although sparse attention 
mechanisms address the quadratic complexity 
issue, they limit the utilization of information. 
Furthermore, due to the complex temporal 
patterns in long-term predictions, self-attention 
mechanisms struggle to capture reliable 
dependencies. Therefore, Autoformer was 
designed with a deep decomposition 
architecture, which integrates time series 
decomposition into the Transformer model for the 
first time. This architecture includes sequence 
decomposition units, self-correlation 
mechanisms, and corresponding encoder-
decoder components. 

 
2 EVALUATION METRICS AND 

DATASETS FOR TIME SERIES 
FORECASTING 

 
2.1 Evaluation Metrics for Time Series 

Forecasting 
 
Evaluation metrics are tools used to assess and 
analyze the performance of time series 
forecasting models, serving as key criteria for 
measuring model performance. Common 
evaluation metrics for time series forecasting 
include: 

 
Mean Squared Error (MSE): This measures the 
average squared difference between predicted 
and actual values, reflecting the overall error 
between the predictions and actual outcomes. It 
is calculated as follows: 
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Root Mean Squared Error (RMSE): This is the 
square root of MSE, assigning higher weights to 
larger errors and emphasizing the stability of the 
prediction results. It is calculated as follows: 
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Mean Absolute Error (MAE): This represents 
the mean absolute difference between predicted 
and actual values, reducing the influence of 
outliers. It is calculated as follows: 
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Mean Absolute Percentage Error (MAPE): This 
metric considers the relative magnitude of the 
actual values, avoiding the cancellation effect of 
positive and negative errors. It is calculated as 
follows: 
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Symmetric Mean Absolute Percentage            
Error (SMAPE): This is a modification of MAPE 
that avoids excessively large values when the 
actual values are very small. It is calculated as 
follows: 
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Coefficient of Determination (R²): Also                
known as the goodness of fit, this metric               
divides the explained variance by the                    
total variance to measure the proportion of 
variance in the dependent variable explained by 
the independent variables. It is calculated as 
follows: 

 

Var

MSE

yy
n

yy
nyyR

ii

n

i

ii

n

i
−=

−

−

−=

=

=
1

)(
1

)ˆ(
1

1ˆ,
2

1

2

12 ）（

        

(6)

 
 
In the formulas (1) to (6) mentioned above, y is 

the true value, ŷ  is the predicted value, y  is the 

mean of y , and Var is the variance. 

 

Except for 2
R , all the evaluation metrics 

mentioned above are better when their values 
are smaller. The choice of evaluation metric 
depends on the specific situation. Typically, a 
combination of multiple metrics is used to 
comprehensively analyze the model,                   
enabling deeper insights. Due to the differences 
in the characteristics and application                        
focus of Recurrent Neural Network (RNN) 
models and Transformer models when               
handling time series data, researchers prioritize 
different metrics when evaluating algorithm 
performance. 

 
RNN models, with their memory capability, excel 
at capturing long-term dependencies in time 
series. Consequently, evaluation metrics for 
RNNs often emphasize the ability to model the 
overall structure of the time series and 
adaptability to various tasks. Researchers may 
use a diverse range of evaluation metrics to 
thoroughly assess the performance of these 
algorithms. On the other hand, Transformer 
models, with their self-attention mechanism 
allowing for parallel computation, are more 
efficient and focus heavily on predictive 
accuracy. As such, researchers commonly use 
MAE (Mean Absolute Error) and MSE (Mean 
Squared Error) to measure the performance of 
Transformers. 

 
2.2 Datasets 
 
2.2.1 ETT 

 
The ETT dataset, provided by the State Grid 
Corporation of China, consists of minute-level 
recordings of transformer oil temperatures from 
two counties in the same province during 2016–
2018. Each dataset contains 1,051,200 data 
points. To explore long-term prediction 
granularity, the dataset was divided into               
subsets based on sampling intervals of 15 
minutes and 1 hour, resulting in four subsets: 
ETTm1, ETTm2, ETTh1, and ETTh2. These 
subsets contain 69,680 and 17,420 data points, 
respectively. Each data point includes seven 
features, comprising the target variable (oil 
temperature) and six types of power load 
features. 

 
2.2.2 ECL 

 
ECL (Electricity Consuming Load): Electricity 
Consumption Load dataset from 2012–2014. 
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2.2.3 Traffic 
 
Traffic: Traffic dataset from California's 
Department of Transportation (2015–2016). 
 
2.2.4 Weather 
 
Weather: The weather dataset, provided by the 
meteorological station of the Max Planck Institute 
for Biogeochemistry, records 21 meteorological 
indicators such as air pressure, temperature, and 
humidity collected every 10 minutes from 2020 to 
2021. 
 
2.2.5 ILI 
 
ILI: The influenza dataset, provided by the 
Centers for Disease Control and Prevention in 
the United States, records the ratio of influenza 
like disease patients to the total number of 
patients per week from 2002 to 2021. 
 
2.2.6 TE  
 

Tennessee Eastman (TE) is a representative 
chemical process proposed by an American 
chemical company, consisting of a gas-liquid 
separator, a circulating compressor, a stripper, a 
condenser, a reactor, and other components. 
The TE chemical process can simulate 21 types 
of faults in industrial production processes. 
These faults are mainly divided into 6 types, 

including constant position, sticking, step, 
random variable, slow drift, and five unknown 
faults. The variable parameters of this process 
include 41 measured variables (XMEAS (1) - 
XMEAS (41)) and 12 manipulated variables 
(XMV (1) - XMV (12)), for a total of 53 observed 
variables. 

 
3 TIME SERIES PREDICTION MODEL 

BASED ON DEEP LEARNING 
 
3.1 RNN 
 
The RNN model consists of the following three 
main components: 

 
(1) Input Layer: Receives input data and 

passes it to the hidden layer. The input 
includes not only static data but also 
historical information from the sequence. 

(2) Hidden Layer: The core component that 
captures temporal dependencies. The 
output of the hidden layer depends on both 
the current input and the hidden state from 
the previous timestep. 

(3) Output Layer: Generates the final 
prediction based on the output of the 
hidden layer. 

 
The structure of the RNN is illustrated in the 
diagram below: 

 
 

Fig. 1. RNN structure diagram 
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The diagram shows the basic structure of an 

RNN, where t
o represents the output information, 

t
h represents the hidden layer output at the 

current timestep, 
1t

h
−

 represents the hidden layer 

output from the previous timestep, and t
x  

represents the current input. Functions 
1

f  and 

2
f  are activation functions, while W , U , V  

represent weight matrices. RNNs work by 
continuously cycling the same neuron over time. 
The calculation for the current timestep is given 
by: 
 

)(
11

bWhUxfh
ttt
++=

−
           (7) 
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2

cVhfo
tt
+=                                     (8) 

 

The working principle of RNNs can be 
summarized in the following steps: At each 

timestep, the RNN unit receives the input t
x

 for 

the current timestep and the hidden state 1t
h

−  

from the previous timestep. Based on these, the 
hidden layer computes a new state 

t
h  using a 

nonlinear function (such as Tanh or ReLU). The 

output layer then generates the final output t
o  

using another weight matrix and activation 
function. 
 
Although RNNs are effective for processing 
sequential data, they suffer from issues like 
vanishing and exploding gradients. For long 
sequences, the gradients may become very 
small (vanish) or excessively large (explode) due 
to repeated multiplication. To address these 
problems, variants of RNNs, such as Long Short-
Term Memory (LSTM) networks and Gated 
Recurrent Units (GRU), have been developed. 
 

3.2 Long Short-Term Memory (LSTM) 
 
LSTM is a specialized RNN architecture 
proposed by Hochreiter and Schmidhuber in 
1997. It was designed to overcome the gradient 
vanishing and exploding problems encountered 
in standard RNNs when handling long 
sequences. The core of an LSTM is its 
sophisticated gating mechanism, which controls 
the flow of information in and out of the unit. A 
typical LSTM unit comprises the following 
components: forget gate, input gate, cell state, 
and output gate. Below is its structure diagram: 

 

 
 

Fig. 2. LSTM structure diagram 
 
3.2.1 Forget Gate 
 
In an LSTM, the first step is determining which information should be filtered out from the cell state by 
the forget gate. This operation is achieved through the forget gate's structure. The forget gate reads 
the previous output t 1h −  and the current input tx , applies a Sigmoid nonlinear transformation, and 

outputs a vector tf . Each value in this vector ranges from 0 to 1, where 1 indicates complete retention 

and 0 indicates complete discard. This vector is then multiplied element-wise with the cell state t -1C

.For example, in a language model, the cell state may encode the gender information of the subject in 
the current sentence, ensuring the correct pronoun is selected. When a new subject is identified, the 
forget gate removes the prior subject's gender information to make room for the new information. 
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Fig. 3. Forgetting gate structure diagram 
 
The mathematical formula for the forget gate is 
as follows: 
 

)],[(
1 fttft

bxhWf +=
−

           (9) 

 

here (
f

W )and ( f
b ) are the weight matrix and bias 

vector, ( 1t
h

− ) is the previous hidden state,(
t

x ) is 

the current input, and   is the Sigmoid 
activation function. 
 

3.2.2 Input gate 
 

The information update mechanism in Long 
Short-Term Memory (LSTM) networks involves 
the following two steps to determine how new 
information is stored in the cell state: 

(1) Input Gate activation function. This is a 
layer composed of a sigmoid activation 
function that determines which values will 
be updated to the cellular state. This layer 
outputs a vector between 0 and 1, where 
each element corresponds to the updated 
weight of the corresponding element in the 
candidate cell state. 

(2) Generation of candidate cell states. This 
layer, formed by a tanh activation function, 
creates a vector of potential new 
information containing values that might be 
integrated into the current cell state. This 
newly generated vector is then multiplied 
element-wise by the output of the input 
gate to determine the actual values added 
to the cell state. 

 

.  
 

Fig. 4. Input door structure diagram 
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The mathematical expressions for these two steps are as follows: 
 

)],[(
1 ittit

bxhWi +=
−

                      (10) 

 

)],[tanh(
~

1 cttct
bxhWC +=

−
        (11) 

 

here ( i
W )and ( i

b )，( c
W )and（ c

b ） are the parameter matrices and bias vectors, ( 1t
h

− ) is the hidden 

state from the previous timestep, ( t
x ) is the current input,  and tanh are activation functions. 

 

The next step updates the cell state t
C  by combining the information to be forgotten and the newly 

added information: 
 

 
 

Fig. 5. Update cell structure diagram 
 

LSTM cells need to multiply the previous state t-1
C with t

f , discard the information that needs to be 

discarded, and then add tt
Ci
~

 . This is the new output state t
C . 

 
3.2.3 Output gate 
 

 
 

Fig. 6. Output Gate Structure Diagram 
 
The mathematical formula for the output gate is as follows: 
 

)],[(
1 0tt0t

bxhWo +=
−

         (12) 
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)tanh(
ttt

Coh =          (13) 

 
here ( 0W )and ( 0b ) are the parameter matrices and bias vectors, ( t 1h − ) is the previous timestep's 

hidden state, ( tx ) is the current input, and   is the sigmoid activation function. 

 

3.3 Gated Recurrent Units (GRU) 
 
GRU is a simplified variant of LSTM that retains the gating mechanisms (update and reset gates) to 
control the flow of information while omitting the separate memory cell. GRUs have fewer parameters 
than LSTMs, resulting in higher computational efficiency and, in some cases, similar or better 
performance. The core components of GRU include: 
 

 
 

Fig. 7. GRU structure diagram 
 
3.3.1 Update gate 
 
The update gate determines how much of the 
previous timestep's hidden state should be 
retained in the current hidden state. It outputs 
values between 0 and 1, where higher values 
indicate greater retention of past information and 
lower values suggest reliance on current input. 
The formula is: 
 

)],[(
1 zttzt

bxhWz +=
−

        (14) 

 

here ( z
W ) and ( z

b ) are the parameter matrices 

and bias vectors,( 1t
h

− ) is the previous hidden 

state, ( t
x ) is the current input, and   is the 

sigmoid activation function. 
 
3.3.2 Reset gate 
 
The reset gate determines the extent to which 
the previous hidden state influences the 
computation of the candidate hidden state. When 
the reset gate output is close to 0, most of the 
previous information is ignored; when it is close 

to 1, more past information is retained. The 
formula is: 
 

)],[(
1 ttttt

bxhWr +=
−

          (15) 

 

here ( r
W )and( r

b ) are the parameter matrices and 

bias vectors. 
 
At each time step, the GRU unit processes 
information through the following steps: 
 
(1) Calculate update and reset gates 

 
According to the above formula, calculate the 

update gates ( t
z ) and ( t

r ) respectively, and the 

outputs of these gates will control the update of 
hidden states and the degree of preservation of 
historical information. 
 
(2) Calculate candidate hidden states 
 
GRU uses reset gates to control the degree of 
dependence on previously hidden states and 
calculate candidate hidden states. 
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The calculation formula for candidate hidden 
states is: 

 

)],[tanh(
~

1
bxhrWh

tttt
+=

−
         (16) 

 

Among them, ( 1−


tt
hr ) represents combining 

the hidden state of the previous time step ( 1t
h

− ) 

with the reset gate ( t
r ) to control its degree of 

influence, and (W ) and ( b ) are the parameter 

matrix and bias. 

 
(3) Update Hidden State 

 

The final step is to use the update gate ( t
z ) to 

calculate the current hidden state ( t
h ): 

 

ttttt
hzhzh
~

)1(
1

+−=
−

         (17) 

 
Here, 1

)1(
−

−
tt

hz controls the retention of past 

information, and tt
hz
~

  introduces new 

information. This formula ensures that the current 
hidden state incorporates both historical and new 
information effectively. 
 

3.4 Bi-LSTM Model 
 

The Bi-LSTM (Bidirectional Long Short-Term 
Memory) network is an improved version of the 
LSTM network. It combines two LSTMs: one 
processes the sequence from the beginning to 
the end, while the other processes it in reverse, 
from the end to the beginning. This architecture 
excels in several tasks compared to standard 
LSTM networks. Bi-LSTM is a time-recurrent 
neural network that stacks forward and backward 
LSTM layers together. The output is determined 
by the hidden states of these two LSTM layers. 
Bi-LSTM combines the traditional forward and 
backward time sequences, leveraging LSTM's 
sensitivity to sequence order to construct a 
bidirectional network. The concatenated vector of 
outputs from the forward and backward 
processes provides the complete hidden 
representation of Bi-LSTM, as shown below: 
 

b

t

f

tt
hhh =          (18) 

 

Here, f
th is the output from the forward LSTM 

layer, and b
th is the output from the backward 

LSTM layer. These outputs are combined using 
element-wise summation. The internal structure 
of Bi-LSTM cells is identical to that of standard 
LSTMs and is thus not elaborated further. 

 

 
 

Fig. 8. Bi LSTM Structure Diagram 
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3.5 Transformer Model 
 

The Transformer is a deep learning architecture 
primarily used for natural language processing 
(NLP) and other sequence-to-sequence                  
tasks. It was first proposed by Vaswani et al.                  
in 2017. The key innovation of the               
Transformer architecture is the self-attention 
mechanism, which allows it to excel in 
processing sequential data. The Transformer 
employs a self-attention-based encoder-decoder 
structure. 
 

(1) Encoder: Composed of stacked identical 
layers, each layer includes two sub-layers: a 
multi-head self-attention mechanism and a 
position-wise fully connected feedforward 
network. Normalization layers and residual 
connections are applied to the input and output 
of the multi-head self-attention module. 
 

(2) Decoder: The decoder generates the output 
sequence using the representation produced by 
the encoder. Similar to the encoder, the decoder 

is composed of stacked identical layers. Each 
decoder layer adds a third sub-layer, which 
performs multi-head attention over the encoder's 
output. Residual connections and normalization 
layers are applied to each sub-layer. The 
following is the architecture diagram of 
Transformer. 
 

3.5.1 Self-Attention mechanism 
 

The self-attention mechanism is the core concept 
of the Transformer. It enables the model to 
consider all positions in the input sequence 
simultaneously, unlike recurrent or convolutional 
neural networks that process sequentially. The 
self-attention mechanism assigns varying 
attention weights to different parts of the input 
sequence, thereby capturing semantic 
relationships more effectively. The mathematical 
expression for self-attention is as follows: 
 

)V
d

QK
softmax(Q,K,V)Attention(

k

T

=        (19) 

 

 
 

Fig. 9. Transformer architecture diagram 
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Firstly, extract the query vector ( Q ), key vector         

( K ), and value vector (V ) from the embedded 

vector. Next, determine a score for each vector: 
the score is equal to KQ • . Score normalization 

(division k
d ) is used for gradient stability. Next, 

use the softmax activation function to process 
the scores. The weighted score of each input 
vector is obtained by taking the softmax dot 
product value. Sum up to produce the final result. 
 
3.5.2 Multi-head attention mechanism 
 
The Transformer model employs a multi-head 
self-attention mechanism to enhance its ability to 
capture dependencies among elements in a 
sequence. The core principle of the attention 
mechanism is that each token in a sequence can 
aggregate information from other tokens, 
enabling the model to better understand 
contextual relationships. This is achieved by 
mapping a query, a set of key-value pairs, and 
an output (each represented as vectors) into an 
attention function. The output is computed as a 
weighted sum of the values, where the weights 
are determined by a compatibility function 
between the query and the corresponding keys. 
Multi-head attention is equivalent to combining 
multiple scaled dot-product attention 
mechanisms. It effectively parallelizes the 
processing of the query ( Q ), key ( K ), and value 

( V ) vectors, resulting in a final output that 

integrates information from different attention 
heads. 
 
3.5.3 Positional encoding 
 
Since the Transformer model does not rely on 
recursion or convolution, it requires a method             
to capture the relative or absolute position of 
tokens within a sequence to effectively utilize 
sequential order. Positional encoding is 
introduced at the input level of the encoder and 
decoder stacks. These positional encodings are 
added to the input embeddings, sharing the 
same dimensional space. They are calculated 
using sine and cosine functions at different 
frequencies as follows: 
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(20) 

Here, t  is the position in the sequence, d  is the 

vector dimension, and k  is the natural number 

used for indexing. By mapping each position to a 
unique frequency using sine and cosine 
functions, and converting the frequency into an 
element in the embedding vector using the 
corresponding sine and cosine functions, the 
model can capture the position information when 
processing the input sequence.  
 

3.6 Comparison of Deep Learning Models 
 
Datasets: This study conducted experiments 
using the ETTm2, Electricity, Traffic, and 
Weather datasets. Other datasets were excluded 
due to insufficient periodicity, seasonality, or data 
volume. 
 
Experiment Details: To ensure consistency, all 
models used an input sequence length of 24 and 
a prediction length of 1. For the ETTm2, 
Electricity, and Weather datasets, the first 
variable was selected for prediction, representing 
the high-useful load of an electric transformer oil 
temperature, a user's hourly electricity 
consumption, and atmospheric pressure, 
respectively. For the Traffic dataset, the third 
variable was selected, representing the hourly 
road occupancy rate recorded by a sensor. All 
models were trained using the Adam optimizer, 
with MSE (Mean Squared Error) and MAE (Mean 
Absolute Error) as evaluation metrics. PyTorch 
was used for implementation. 
 
Fig. 10 shows the prediction curves of four 
models on the ETTm2 dataset, where the 
horizontal axis represents the dataset, the 
vertical axis represents the numerical size, the 
blue curve represents the actual data value, and 
the red curve represents the predicted value. 
 
Fig. 11 The prediction curves of four models on 
the ECL dataset, where the horizontal axis 
represents the dataset, the vertical axis 
represents the numerical size, the blue curve 
represents the actual data value, and the red 
curve represents the predicted value. 
 
Fig. 12 The prediction curves of four models on 
the Weather dataset, where the horizontal axis 
represents the number of test sets, the vertical 
axis represents the numerical size, the blue 
curve represents the actual data value, and the 
red curve represents the predicted value. 
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(a) RNN model     (b) LSTM model 

 

 
(c) GRU model    (d) Transformer model 

 
(e) LSTM-RNN model 

 

Fig. 10. The prediction curves of four models on the ETTm2 dataset 
 

 
(a) RNN model       (b) LSTM model 
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(c) GRU model         (d) Transformer model 

 

 
(e) LSTM-RNN model 

 
Fig. 11. The prediction curves of four models on the ECL dataset 

 

 
(a) RNN model      (b) LSTM model 

 
(c) GRU model      (d) Transformer model 
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(e) LSTM-RNN model 

 

Fig. 12. The prediction curves of four models on the Weather dataset 
 

 
(a) RNN model     (b) LSTM model 

 

 
(c) GRU model           (d) Transformer model 

 

 
(e) LSTM-RNN model 

 
Fig. 13. The prediction curves of four models on the Traffic dataset 
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Table 1. Comparison of univariate prediction performance of four deep learning models 
 

Model Evaluating indicator  ETTm2 Electricity Weather Traffic 

RNN MSE 
MAE 

3.459 
1.404 

21.603 
2.014 

0.007 
0.060 

0.00112 
0.021 

LSTM MSE 
MAE 

3.480 
1.414 

19.821 
1.848 

0.008 
0.066 

0.00120 
0.020 

GRU MSE 
MAE 

3.454 
1.402 

19.524 
1.889 

0.007 
0.062 

0.00110 
0.021 

Transformer MSE 
MAE 

3.418 
1.399 

19.541 
2.025 

0.827 
0.341 

0.00122 
0.021 

LSTM-RNN MSE 
MAE 

3.454 
1.404 

21.583 
1.941 

0.007 
0.062 

0.00125 
0.021 

 

Fig. 13 The prediction curves of four models on 
the Traffic dataset, where the horizontal axis 
represents the number of test sets, the vertical 
axis represents the numerical size, the blue 
curve represents the actual data value, and the 
red curve represents the predicted value. 
 

We compare and analyze the performance of the 
four deep learning models mentioned above (as 
shown in Table 1). 
 

The experimental data of various models listed in 
Table 1 were analyzed and summarized in depth, 
and the conclusion is as follows: the Transformer 
model achieved the best performance on the 
ETTm2 dataset, with minimum MAE and MSE 
values. The LSTM model achieved the minimum 
MAE on the Electricity and Traffic datasets, i.e. 
the minimum tie error. The GRU model achieved 
the minimum mean square error (MSE) on the 
Electricity and Traffic datasets. The RNN model 
achieved the best performance on the Weather 
dataset, with minimum MAE and MSE values. 
The LSTM-RNN model generally outperforms the 
standard RNN and also shows better results than 
the ordinary LSTM model on the ETTm2 and 
Weather datasets. Overall, in most cases, the 
combination of the two results in a certain 
performance improvement. 
 

4. SUMMARY AND OUTLOOK 
 

4.1 Summary 
 

Although traditional statistical modeling 
techniques incorporate structural assumptions 
into models, making them easier to understand, 
they often require independent modeling of time 
series data in modern predictive applications. 
This approach significantly increases labor and 
computational costs. Therefore, it is necessary to 
find more efficient techniques capable of 
simultaneously handling varying degrees of 
relationships among two or more variables. Deep 

learning techniques can accurately identify 
complex patterns within and across time series 
with relatively lower human resource 
requirements. However, these models rely on 
fewer structural assumptions, making them more 
challenging to interpret and often requiring larger 
training datasets to learn accurate models. 
Additionally, since different sample types exhibit 
distinct distribution patterns, a single fixed model 
cannot be universally applied, necessitating the 
use of multiple regression algorithms. This has 
led to innovative forecasting methods that 
combine traditional statistical models with deep 
learning. These hybrid approaches have 
significantly addressed the limitations of both 
techniques. In recent years, many deep neural 
network models for time series analysis have 
been proposed. These methods not only enable 
models to automatically extract features and 
learn complex temporal patterns but also apply 
assumptions like temporal smoothing, enhancing 
model interpretability. As research on neural 
network technologies continues to advance, 
deep learning has become one of the hottest 
research topics in machine vision. Based on a 
review of literature on time series forecasting and 
deep learning, this paper primarily explores four 
deep learning models for time series forecasting. 
 

4.2 Outlook 
 
Deep learning has achieved significant results in 
the field of time series prediction, and the future 
prospects are even more exciting. With the 
continuous advancement of technology, we have 
reason to believe that deep learning will play a 
more important role in temporal prediction, 
bringing revolutionary changes to various 
industries. 
 
Firstly, at the algorithmic level, deep learning will 
be further optimized and improved. At present, 
models such as RNN, LSTM, and GRU have 
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achieved good results in time series prediction. 
In the future, new deep learning models such as 
Transformers and graph neural networks are 
expected to better handle time-series data, 
improve prediction accuracy and stability. 
 

Secondly, at the application level, deep learning 
will play an important role in more fields. For 
example, in the financial field, deep learning can 
be used for stock price prediction, risk 
management, etc; In the field of energy, it can be 
used for power load forecasting, new energy 
generation forecasting, etc; In the field of 
transportation, it can be used for traffic flow 
prediction, flight delay prediction, etc. With the 
continuous accumulation of data, the application 
of deep learning in time series prediction will 
become more widespread. 
 

In addition, cross domain fusion of deep learning 
in temporal prediction will also become a 
development trend. For example, combining 
deep learning with statistics, chaos theory, etc. is 
expected to further improve the generalization 
ability and robustness of prediction models. At 
the same time, by combining domain knowledge, 
deep learning can achieve finer grained temporal 
prediction, providing decision-makers with more 
targeted recommendations. 
 

Finally, with the continuous improvement of 
computing power, the real-time performance of 
deep learning in temporal prediction will be 
guaranteed. In the future, real-time prediction will 
become possible, providing more accurate and 
real-time decision support for various industries. 
 

5. CONCLUSION 
 

This paper presents a systematic review of time 
series forecasting methods based on deep 
learning. It first introduces the background, 
significance, and various methods of time series 
forecasting. Then, it provides a detailed overview 
of representative deep learning models in this 
domain, including RNN, LSTM, GRU, and 
Transformer models. Subsequently, it conducts 
comparative prediction experiments on public 
datasets and evaluates the performance of these 
models. Finally, it explores future research 
directions for deep learning in time series 
forecasting, offering valuable insights for further 
advancements in this field.  
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