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ABSTRACT 
 

This work is devoted to a numerical study of the energy savings achieved by an oven insulated with 
terracotta bricks compared to an uninsulated oven. The numerical methodology is based on the 
nodal method and the transfer equations were obtained by making an energy balance on each 
node. The equations were then discretized using an implicit scheme with finite differences and 
solved by the Gauss algorithm. Numerical results validated by the experiment show that the 
insulation of the oven with terracotta bricks considerably reduces the energy losses through the 
walls, but the reduction level varies according to the thickness of the bricks. The optimal 
thicknesses of the bricks are between 3 and 4 cm, which corresponds to energy savings of 
between 60 to 70% compared to the uninsulated oven. The energy saved increases the energy 
efficiency of the oven from 15-17% to 25-29%. 
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ABBREVIATIONS 
 
�													 ∶ 														����������	��	�ℎ�	����  
�													 ∶ 													�ℎ�����	������������	(�.���. ���)  


 
:  Density (kg.m-3) 

F :  Form factor 
  :  Kinematic viscosity of air (m2.s-1) 

�												 ∶ 														������	���������	��������	(5,67. 10��������)  


 :  Dynamic viscosity (Kg.m
-1

.s
-1

) 

�													 ∶ 													�ℎ������������	�ℎ�������	(�)   
Ci :  Material heat capacity (kJ/kg.K) 
D :  Hydraulic diameter (m) 
Fciel :  Sky form factor 
��,�  :  Thermal conductance at nodes i and j (W.K-1) 

Gr :  Grashof number 
H :  Convection heat transfer coefficient (�.���. ���) 

rh  :  Radiative conductance (�.���. ���) 

e
ah  

:  Enthalpy of air entering the node (J) 

s
ah  

:  Enthalpy of air outing the node (J) 

mi :  Mass of node i (Kg) 
e
aim  

:  Mass air entering in the node i (Kg) 

s
aim  

:  Mass air outing of the node i (Kg) 

Nu :  Nusselt number 
P :  Perimeter (m) 
Pr :  Prandlt number 
Re :  Reynolds number 
S :  Surface (m

2
) 

Ti,j :  Temperature at nodes i and j (K) 
Text :  Ambient temperature (K) 

intfT  
:  Temperature of the internal face of the material (K) 

extfT   
:  Temperature of the external face of the material (K) 

Tsky :  Sky temperature (K) 
V :  Air velocity (m/s) 
Qi :  Heat source at node i (J) 

char
 

:  Thermal conductivity of charcoal, 

chare
 

 :  Charcoal thickness 

L  :  Oven length (m) 
H  :  Oven height (m) 
W  :  Oven width (m) 
Lc  :  Characteristic length (m) 
 

1. INTRODUCTION  
 

In developing countries, biomass is the main 
source of energy used for cooking meals [1,2,3]. 
This situation has a negative impact on forest 
resources and several studies have raised the 
alarm about the regression of forest areas and its 
impact on the climate [4,5,6]. 

In recent years, with a view to control this 
problem, research has been directed towards the 
development of energy-efficient cooking 
technologies. The issue is also environmental 
because it is known that emissions from 
households cookstoves degrade air quality with 
harmful health and climatic consequences 
[7,8,9,10]. The environmental impact is greater in 



the case of traditional cookstoves with a low 
energy efficiency [11]. Thus, from traditional 3
stone stoves, of which 85 to 90% of the energ
lost in the environment [12], improved stoves 
have been developed. Improvement technics 
vary from one stove to another, but most of them 
are based on insulating the wall of the stove. The 
insulation materials used are generally local 
(fired clay bricks, sun-dried bricks, clay, etc.). 
Several studies have shown that insulation 
materials have significantly improved the 
energy efficiency of cookstoves and reduced 
emissions compared to 3-stone cookstoves 
[13,14,15,16]. 

 
However, the improvements were 
concentrated in the household cookstoves. In 
Burkina Faso, grillers continue to use uninsulated 
metal ovens with the same disadvantages as 
those associated with the use of traditional 
cookstoves. In addition, the lack of insulation 
exposes grillers to high temperatures and 
shortens the useful life of the equipment. In our 
previous work, we have shown that these 
equipment lost half of the energy consumed in 
the environment through the walls [17].
 
It is therefore important to insulate the walls of 
these ovens in order to correct their energy 
shortcomings. Among the insulating materials 
recommended for ovens are refractory materials, 
including terracotta bricks. These materials are 
able to withstand high temperatures and sudden 
temperature changes [18,19]. In addition, 
terracotta bricks have good thermophysical 
properties [20,21] and are produced locally.

 
However, before developing an isolated 
prototype with these materials, it is important to 
have simulated results on the thermal behavior of 
the new oven. This is why the aim of this work is 
to model and simulate an insulated oven with 
terracotta bricks. The results obtained will later 
allow to develop a commercial oven prototype for 
the grilling sector in Burkina Faso. 

 
2. OVEN MODELING  
 

2.1 Description of the Oven  
 
The oven model studied is an oven which uses 
charcoal as fuel and consists of a casing made of 
iron sheet, of dimensions : L = 70 cm, W = 50
and H = 20 cm. For the purposes of the 
simulation, we consider that the thickness of t
bricks varies from 0 to 7 cm. 
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Fig. 1. Presentation of the oven model

 

2.2 Mathematical Formulation
 
2.2.1 Simplifying hypotheses 
 
We have considered the following simplifying 
assumptions: 
 
 The thermophysical properties of the 

materials used for oven design are almost 
constant, 

 The ambient temperature is the same 
outside of the oven, 

 The distribution of heat is homogeneous 
inside the oven, 

 The properties of the air depend on the 
speed outside and inside they depend on 
the speed and the temperature.

 
Oven heat transfer model and discretization 
points are shown in Fig. 2. 
 

 
Fig. 2. Oven heat transfer model and 

discretization points
 
2.2.2 Heat transfers equations in the oven 

and their discretization 
 
Mathematical model is based on the heat 
balance used by others authors [22]:
 
At each discretization point, we have the 
following equation:  
 

ji

e
a

e
aiijji

i
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T
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Where, 
 
mi: Mass of node i,  
Ci: Material heat capacity,  
Ti,j: Temperature at nodes i and j, 
��,� : Thermal conductance at nodes i and j, 

e
aim : Mass air entering in the node i, 

s
aim : Mass air outing the node i, 

e
ah : Enthalpy of air entering the node,  

s
ah : Enthalpy of air outing the node, 

Qi: Heat source at node i 
 
According to the heat transfer mode, the 
following equations are adopted: 
 
The conductive conductance:  
 

e

S
g ji


,

                             (2) 

 
Where, 
 
� ∶ 	Thermal	conductivity, 
S:   Surface,  
 � ∶ Characteristic	thickness 
 
The convective conductance: 
 

Shg ji ,                              (3) 

 
Where, 
 
h is the convection heat transfer coefficient 
 
The radiative conductance: 
 

))((.. 22
, ijijji TTTTFg                   (4) 

 
Where, 
 
�: Emissivity	of	the	wall,  
F: Form factor, 
�: Stefan	Boltzmann	constant	(5,67. 10��m��K��) 
 
The combustion chamber internal walls 
exchange heat by conduction, convection and 
radiation with the fuel, which gives the following 
relation: 
 

)()( ,, ijjiimmi
i

ii TTgTTg
t

T
cm 



        (5) 

With  
 

ji

jiji

ji
e

S
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,

,,

,

.
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and   
 

mi

char

char
rmi S

e
hhg ,, )

2
(


  for the side walls, 

 

 
mi

char

char
rmi S
e

hhg ,, )(


  for the bottom wall 

 

Where, 
 

hr : Radiative heat transfer coefficient, 

char : Thermal conductivity of charcoal, 

chare  : Charcoal thickness 

 
The outer walls exchange heat by convection 
and radiation with the external environment, 
which gives the following relation: 
 

)()()( ,,, iskyskyiiextextijiji
i

ii TTgTTgTTg
t

T
cm 


 (6) 

 

With, 
 

extiexti Shg ,, )(  and  skyirskyi Shg ,,   

 

Tsky: Sky temperature (K), 
Text: Ambient temperature (K) 
 
The heat exchanged by the air inlets and outlets 
at the grid is expressed by: 
 

 





ji

s
a

s
ai

e
a

e
aiijji

i
ii hmhmTTg
t

T
cm )(,

 
(7) 

 
The heat exchanged by the air inlets and outlets 
at the combustion chamber with the heat source 
is expressed by: 
 

mjm

s
a

s
am

e
a

e
ammjjm

m
mm QhmhmTTg

t

T
cm 




 

)(,
  

(8) 

 

The discretization of these equations gives for 
the external walls: 
 

)()()( ,,,
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jji

t
i

tt
i
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which gives: 
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ii
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t is the step time 
 

Likewise at the internal walls, we have: 
 

t
i

tt
mmi

tt
jji

tt
imiji TTTT  

,,,, )1(   

(10) 
 

2.3 Expressions of Heat Transfer 
Coefficients 

 
The thermophysical properties of the materials 
used to build the oven are shown in Table 1. 
 
2.3.1 Convective heat transfer 
 
In the characterization of thermal transfers 
between any fluid and a wall, the number of 
Nusselt (Nu) is used. Indeed: 
 


chL

Nu                                (11) 

 

With h the heat exchange coefficient, Lc the 

characteristic length and   the thermal 
conductivity of the fluid. 
 
Empirical correlations allow to determine the 
Nusselt number as a function of the type and the 
transfer regime. In our study the type of 
convection inside the chamber is forced 
convection because of the effect of the draft. The 
following relationship will then be used [23]: 
 

)Re733.2Re6.1(5.0 59.05.0 Nu         (12) 

 

Where, 
 



 Dv 
Re  is the Reynolds number and 

P

S
D



4  the hydraulic diameter 

 is the air density,  the kinematic viscosity of 

air and  the dynamic viscosity of air 

 
Outside the combustion chamber, we have a 
natural convection with the external environment. 
For natural convection around a vertical flat 
plate, Nu can be estimated by [24]: 
 

025.0).(Pr59.0 GrNu    for  94 10.Pr10  Gr    (13) 

 
and  
 

33.0).(Pr13.0 GrNu   for  910.Pr Gr          (14) 

 
Where, 
 
Pr is the Prandlt number and Gr the Grashof 
number  
 
The outer and inner faces of the combustion 
chamber exchange heat by convection with the 
surrounding environment. The air velocity being 
not negligible, we chose the Mc Adam correlation 
to determine the heat exchange coefficient of 
these faces [25]. 
 

Vhc 8.37.5             (15) 

 
With V the air velocity 
 
In a charcoal fireplace the correlations used            
for the characteristics of the air inside are            
[26]: 
 
Specific heat: 
 

TCp *0002.09362.0   (kJ/kg.K)           (16)  

 
Thermal conductivity: 
 

7775.0*00031847.0 T   (W/m.K)           (17) 

 
Kinematic viscosity : 
 

62 10*)54.9*0631.0*0000644.0(  TT  ( m2/s )  (18) 

 
Dynamic viscosity:  
 

7775,05 *10*0447,0 T   ( kg/m.s )             (19) 
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Table 1. Thermophysical properties of materials 
 

Materials Heat capacity Density Thermal conductivity 
Terracotta brick 878	�. ����. ��� 1800	��.��� 1,8	�.���.��� 
Mortar 500 �. ����. ��� 1515	��.��� 1,13 �.���. ��� 
Iron sheet 478	�. ����. ��� 7850	��.��� 70	�.���. ��� 

 
Density: 
 

T/353   (kg/m3)                                        (20) 

 

685.0Pr  (Constant)                                     (21) 
 
2.3.2 Radiant heat transfer 
 
The radiative transfer coefficient between the 
outer wall of the oven and the celestial vault is 
determined by the expression [22]: 
 

))((

1
11

22
skytskyi

sky

r TTTT

F

h 







             (22) 

 

In the case of a vertical wall with the celestial 
vault, Fsky is deduced by the following expression 
[27,28]: 
 

)3(2

23

b

b
Fsky









              (23) 

 
Where, 
 

b is a function of the anisotropy of the sky. For an 
isotropic sky (b = 0), the radiative form factor 
corresponds to 0.5. 
 

Among the several reported correlations to 
determine the temperature of the celestial vault, 
the one proposed by Swinbank is chosen in this 
work [29]: 
 

5.10552.0 extsky TT              (24) 

 

The radiation of the charcoal is quantified by the 
following relation [30]: 
 

2

2222 ))()(2)(2(

L

WHLWHWHL
Fc




   
(25) 

 

Where, 
 

L: Oven length, 
H: Oven height, 
W: Oven width 
 

2.3.3 Energy losses calculation 
 
The energy stored by walls is expressed by: 
 

)
2

( int

ext

extff

iist T
TT

cmE 


 
         (26) 

 
Where, 
 

intfT : Temperature of the internal face of the 

material  

 

extfT  : Temperature of the external face of the 

material  
 
The energy lost by convection and radiation is 
expressed by: 
 

))()(( ,
0

, tTTgtTTgE skyiskyi

t

extiexticv    

(27) 
 
The total energy lost by the oven walls is: 
 

cvstp EEE                 (28) 

 
2.4 Solving the System of Equations 
 
At time t0, the temperatures of the different parts 
of the oven are initialized at 314.15 K 
corresponding to the ambient temperature, then 
we calculate the different coefficients of heat 
transfer by conduction, convection and radiation. 
At t0+t, where t is the step time, the resolution 
of the system of algebraic equations using Gauss 
algorithm (6-8) leads to new values of the 
temperature of the different parts of oven which 
are compared with the arbitrary values. If the 
difference between these two temperatures is 
greater than the desired precision, the values of 
the calculated temperatures replace the arbitrary 
value and the procedure described below is 
repeated until the convergence is obtained. The 
convergence was obtained when the following 
criterion was satisfied: 
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310
t t t

t t

T T

T









           (29) 

 
3. RESULTS AND DISCUSSION 
 
3.1 Model Validation 
 
The mathematical model was validated by 
comparing the numerical and experimental 
results. To perform this, an oven was built with 
the dimensions: L = 70 cm, W = 50 cm and H = 
20 cm. The interior of the combustion chamber 
was then insulated with 4 cm thick terracotta 
bricks and assembled with a cement, sand and 
ash mortar. Figs. 3 and 4 show the experimental 
and numerical temperatures of the external walls 
of the oven. 

 
Our numerical model is to describe the thermal 
behavior of the oven walls. Indeed, the maximum 

relative error 100 ×
�����������

����
is of the order of 

13% and are due to the various empirical 
correlations used for the calculation of the heat 
transfer coefficients. Texp is the experimental 
temperature and Tnum the numerical temperature. 
 

3.2 Influence of Terracotta Bricks 
Thickness on Heat Transfers 

 

Figs. 4 and 5 show the influence of terracotta 
bricks thickness the heat transfer in the oven 
external walls. 
 

The results obtained show that as soon as 
combustion starts in the oven, the temperature of 
the lateral and bottom external walls gradually 
increases and tends to stabilize after one hour of 
operation. It reaches a maximum of 400°C for 
the non-insulated oven (0 cm). This very high 
temperature is due to the high thermal 
conductivity of the iron sheet. In fact, heat is 
easily transmitted to the outside environment 
through the walls, which explains the huge 
energy losses. On the other hand, when the 
thickness of the insulation increases, the 
maximum temperature of the external walls 
decreases considerably. Indeed, it goes from 
400°C without insulation to 90°C for a thickness 
of the terracotta brick of four centimeters. From 
four centimeters thick, the temperature curves of 
the exterior walls are almost confused when the 
thickness of the terracotta brick increases, which 
shows that the thickness 4 cm is the optimal 
thickness of thermal comfort. 

 
 

Fig. 3(a). Model validation for bottom wall (Charcoal mass: 3 Kg, terracotta bricks thickness: 
4 cm, terracotta bricks thermal conductivity: 1.18 �.���.���, terracotta bricks density: 

1800	��.���, terracotta bricks heat capacity: 878	�. ����.���, Mortar thickness: 0.5 cm, Mortar 
conductivity: 1.2	�.���.���, Mortar density 1515	��.���, Mortar heat capacity: 800 

�. ����.���, iron sheet thickness: 0.15 cm, Iron sheet thermal conductivity: 70 �.���.���, 
Iron sheet density: 7850	��.���, Iron sheet heat capacity: ���	�. ����.���) 
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Fig. 3(b). Model validation for lateral walls (Charcoal mass: 3 Kg, terracotta bricks thickness: 
4 cm, terracotta bricks thermal conductivity: 1.18 �.���.���, terracotta bricks density: 

1800	��.���, terracotta bricks heat capacity: 878	�. ����.���, Mortar thickness: 0.5cm, Mortar 
conductivity:1.2	�.���.���, Mortar density: 1515	��.���, Mortar heat capacity: 800 

�. ����.���, iron sheet thickness: 0.15 cm, Iron sheet thermal conductivity: 70 �.���.���, 
Iron sheet density : 7850	��.���, Iron sheet heat capacity : ���	�. ����.���) 

 

 
 

Fig. 4. Lateral walls external temperature profiles for thicknesses of terracotta brick from 0 to 7 
cm 
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Fig. 5. Bottom walls external temperature profiles for thicknesses of terracotta bricks from 0 to 
7 cm 

 

3.3 Influence of Terracotta Bricks 
Thickness on the Energy Losses by 
Oven Walls 

 

Figs. 6, 7 and 8 show the influence of terracotta 
bricks thickness on the energy losses by oven 
walls. 
 
It is noted that the heat losses by convection and 
radiation decrease with the increase in the 
thickness of the bricks. In fact, when the 
thickness of the bricks increases, the 
temperature of the external walls drops as 
observed in Figs. 4 and 5. 
 
It can be seen that the storage losses increase 
with the increase in the thickness of the bricks. 
Indeed, when the thickness of the bricks 
increases, their mass increases, which increases 
the energy storage. 
 
The total energy lost by the walls as a function of 
the thickness of the bricks is shown in Fig. 8. 
 

We note that when the thickness of the terracotta 
brick increases, the total amount of energy lost 
by the walls decreases to a brick thickness of 3 
cm, then increases again with the thickness of 
the bricks. So, with three centimeters of 
thickness, we have the minimum energy loss 
through the walls. The thickness of 3 cm is the 
optimal thickness to minimize energy loss 
through the walls compared to the uninsulated 
oven. 

3.4 Influence of Terracotta Bricks 
Thickness on the Energy Savings by 
the Insulated Oven 

 
Fig. 9 shows the influence of terracotta bricks 
thickness on the energy savings performed by 
insulation. 
 
The result obtained is an accordance with the 
result related to energy losses (Fig. 8). Indeed, 
the maximum energy saving (70%) is achieved at 
the thickness 3 cm, which also represents the 
thickness where the losses are minimal. For the 
thermal comfort thickness (4 cm), the energy 
saving is around 68%. 
 

3.5 Influence of Terracotta Bricks 
Thickness on the Energy Efficiency of 
the Insulated Oven 

 
Fig. 10 show the influence of terracotta bricks 
thickness on the energy efficiency of the 
insulated oven. 
 
We can see that without insulation (0 cm), the 
efficiency of the oven is around 15-17%, which 
corresponds to the efficiency of first generation 
ovens as mentioned in the literature [31]. As for 
the previous results, the maximum efficiency (25-
29%) is obtained for a brick thickness of 3 cm. 
For the thickness of thermal comfort, the 
maximum efficiency is between 24 and                     
28%. 
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Fig. 6. Energy lost by convection and radiation with the ambient 
 

 
 

Fig. 7. Energy stored in the oven walls 
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Fig. 8. Total energy lost by oven walls with terracotta brick thicknesses from 0 to 7 cm 
 

 
 

Fig. 9. Percentage of energy saved with terracotta brick thicknesses from 0 to 7 cm 
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Fig. 10. Influence of the thickness of terracotta bricks on the oven energy efficiency 
 

4. CONCLUSION 
 
In this work, the performances achieved by an 
insulated oven with terracotta bricks compared to 
an uninsulated oven were highlighted by a 
numerical study. The numerical methodology is 
based on the nodal method and the transfer 
equations obtained by making an energy balance 
on each node have been discretized using an 
implicit scheme with finite differences and 
resolved by the Gauss algorithm. The main 
results are summarized as follows: 
 
 The insulation of the oven with terracotta 

bricks significantly reduces heat loss 
through the walls. However, the level of 
loss reduction depends on the thickness of 
the brick. 

 The optimal thickness of the bricks for 
energy savings is 3 cm while the optimal 
thickness for thermal comfort is 4 cm. 

 The energy savings achieved for      
optimal thicknesses are between 60 and 
70%. 

 The maximum efficiency (25-29%) is 
obtained for a brick thickness of 3 cm. For 
the thickness of thermal comfort, the 
maximum efficiency is between 24 and 
28%. 

These results show that terracotta bricks can be 
used to reduce the energy consumption caused 
by grilling equipment. 
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