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Abstract

In this work, 7™ order continuous block methods called the Boundary Value Method (BVM) for the
numerical approximation of sixth-order boundary Value Problem (BVPs) is proposed. These methods are
derived using the Chebyshev polynomial as basis functions. The BVM comprises the main methods and
additional methods, put together to form a block method and thus solved simultaneously to obtain an
approximate solution for sixth-order BVPs. This method do not require a starting value as it is self-
starting. The BVM is found to be consistent and its convergence was discussed. Numerical examples are
shown to illustrate the applicability of the method. To show the efficiency of this method, the
approximated solution derived from the methods is compared to the exact solutions of the problem and
thus maximum errors are recorded and compared to those in other method from literature.
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1 Introduction

In this work, problem of the form

Yy = f6y ),y (), ., y)(x),  x €[a,b] (M

subject to the boundary conditions:

y(@) =a, y(b)=a,
y'(a)=ay y'(b) =Dy, )
y”(a) = CO' y”(b) = C1,

are considered. Where f is Lipschitz on [a, b], to ensure existence and uniqueness of the solution
y € C"[a, b], a;, b;,¢; (j = 0,1) are finite real arbitrary constants.

Sixth-order Boundary Value Problems (BVPs) arise in astrophysics. Consider A-type stars which are
believed to be surrounded by narrow convecting layers bounded by stable layers [1]. When an infinite
horizontal layer of fluid is heated from below and is subjected to the action of rotation, instability sets in.
The governing ordinary differential equation is of sixth order and this instability is of ordinary convection
[2,3]. These problems may be considered as boundary value problems [4]. The existence and uniqueness
results have been studied extensively in [3]. Twizell [4] provided finite difference solution to general sixth-
order BVPs. Other numerical methods emplyed for the solution of sixth order BVPs include but not limited
to; homotopy perturbation methods [5,1], Modified Decomposition Method [6], Adomian Decomposition
Method with Greens function [7], Variational approach and Sinc-Galerkin methods [8], Chebyshev
Collocation-path [9]. Recently, the Cubic B-Spline method [10], was applied to solution of sixth-order
BVPs.

Linear Multistep Method (LMM) for the direct solution of higher order ordinary differential equation using
Chebyshev series approximate solution with interpolation and collocation approach to derived continuous
(LMM) have been of interest in recent times, see [11-15]. Continuous (LMM) have greater advantages over
the discrete method in that they give better error estimate, provide a simplified form of coefficient for
further analytical work at different points and guarantee easy approximation of solution at all interior points
of the integration interval, [12]. Continuous linear multistep method (LMM) is used via block technique, to
formulate Finite Difference Methods (FDMs) using polynomials as basis functions, thus using multistep
interpolation and collocation, continuous FDMs are derived which are assembled and solved simultaneously
to obtain approximations y; = y(x;) , fori =1, ..., N — 1 to the solution of (1) at points x;i = 1,..., N — 1.
Another main advantage of this technique among others metioned earlier is that, the block method to be
derived is self starting. This means that it does not reqire any starting value from any external method or
guess value.

2 Derivation of the Methods

The exact solution y(x) of (1) is approximated by form

p(x) = y(x) = LI piTi(x) )

with the sixth derivative given by as
PP =y 00 = TI5 pT P () @)

Where x € [a, b], p;'s are coefficient to be determined, T;(x) are Chebyshev polynomial of degree r + s —
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1, r is the number of interpolation points that satisfies 6 < r < k, s is the number of collocation points
satisfying 0 < s < k + 1, and k is the step number. Here the following conditions are imposed,;

Y(Xn4j) = Ynejp J=01,.,7—1

®)
YOO () =fuejy J=01,..,s—1, where fo,;= yéil])
Here, ynyj = ¥Y(Xn+j)s farj = f (Xn+j» Yn+j)- Thus, we define the k-step linear multistep method as
Y(x) = 0 a; ()Yt + h® ﬁL(t)fnﬂ (6)
with the following derivatives
Y'(x) = -(Z 20 @' i()Ynai + RO EIZg B () fari)
(7

Y<”>(x)— < (2128 @@ @)ynai + 1O T2 B ) fei)

where a;(t) and S;(t) are continuous coefficients having derivatives aij (t) and ,Bij (t),j = 1(1)5. Let the
solution of (1) be sought on the partition

Ty, A=Xg <X <Xy < <Xy < Xpy1 < <xy=Db
. . . . . b—
of the integration interval [a, b] with a constant step size h, given by h = Ta:

Interpolating (3) at x,,4;; i = 0,1,2,...,7 — 1 and collocating (4) at x,45; s =0,1,2,...,5s — 1 leads to the
following systems of equations:

T+S 1

PiTi(X) = Ynai ®)
157 TP (%) = f ©)

where p;'s are coefficients of the Chebyshev polynomials. Thus we define the following interpolation and
collocation in a single matrix as follows

TO (xn) T1 (xn) : : : Tr+s—1 (xn)

To(Xns1) Ty (xne1) : : : Trys—1(%ns1)

TO (?Cn+r—1) Tl (?Cn+r—1) : : ' Tr+s 1(xn+r—1)
A=|T"@ T0) - TH )

T ) TG - T}i? 1 Gne)

To(m) (Xn+s-1) T1(m) (Xnts-1) - : ' Tr(zls) 1(xn+s—1)

_(Po P10 Pras-)l
b=( )
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£=(yn Yn+1 : : Yn+r-1 fn fn : : : fn+s—1)T
So that

Ab = ¢ (10)
mz(To(x) Tx) - - - Tm_l(x))T

Hence we state the following theorem

Theorem 1 [14]. Let (5) be satisfied, the continuous k-step LMM (6), and (7) are respectively derived from
the equation

Y(x) =c"(A™)'w an
Proof. Given the continuous scheme
Y(x) = X257 piTi(x) (12)

where x € [a, b], p;'s are unknown coefficients, T;(x)'s are the Chebyshev polynomial basis functions of
degree r + s — 1. We can clearly write (12) as

Y(x) = poTo(x) + p1Ti (%) + p2To(X) + -+ + pras—2Tras—2(%) + pras—1Trrs-1(%) (13)
Then (13) can be written compactly in vector form as

() =b"w (14)
From (10), by left inverse cancelation law we have

b=A"1c 15)
Hence, by (15) we have

Y(x) =c"(A™)'w (16)
as required.
It is note worthy that the continuous methods (6) is equivalent to (16) and will be used to produce the main
and additional methods which gives a total of 36 equations and are combined to provide all approximations
on the entire interval for the solution of (1).
2.1 Specification
Now, applying Theorem (1), with k = 6, r = 6, s = 7, the six-step linear multistep method is of the form

Y(x) = X0 AiYnsi + RO Xiog Bifnri (17

with the following derivatives

YD) = %(E?:o @Ynei + h® Xiog Bifari),  J =115 (18)
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Evaluating (17) and (18) at the point x = x,,¢, the coefficients of the main methods are as shown in
Table 1.

Table 1. Coefficients of main formulae for yn e L=0(1)5

24} [25% a az 22} as Bo B B2 Ba Bs Bs Be
Vut6 1 41 2189 4153 2189 41 1
-1 6 -15 20 -15 6 30240 5040 10080 7560 10080 5040 30240
hy'nse  —137 27 127 -117 87 809 20249 122809 2155337 1322381 15203 —133
60 2 33 3 4 10 6652800 1108800 246400 1663200 2217600 369600 950400
h%y'",.s —15 65 =307 —-461 29 20479 289127 16484849 33409303 25205759 1606223 59
4 3 6 62 12 3 59875200 9979200 19958400 14968800 19958400 9979200 171072
3y —17 95 —107 121 -137 31 73 4037 227791 54581 471839 58501
4 4 2 2 4 4 241920 120960 241920 20160 241920 120960 34560
Rty(? —4703 4411 24517 39817 8319 35857 16981
n+6 _— —_—
-3 16 -34 36 -19 4 1814400 100800 40320 18144 4480 33600 259200
hsy(v)6 —457 2741 —4267 18841 53863 44161 5257
+
" -1 5 -10 10 -5 1 40320 30240 120960 15120 120960 30240 17280

The additional methods are obtained by evaluating (18) at the point x = x;, j = 0(1)5. The coefficients of
the additional methods are as shown in Tables 2-6.

Table 2. Coefficients of main formulae for y’;, j = 0(1)5

01} a; [25] az @y Qs Bo B B2 B3 Bs Bs Bs

hy'y -137 10 -5 1 —67 —-4177 -2593 -851 13 —23

60 5 -5 3 4 5 199584 2970 41580 62370 332640 41580 498960
hy'y -1 -13 1 -1 -197 3601 33107 3929 37 61 =17

5 12 2 -1 3 20 4989600 1663200 1663200 356400 151200 1663200 4989600
hy', 1 -1 -1 -1 1 -101 —281 -58309 —37133 311 43 223

20 2 3 1 4 30 1995840C 665280 6652800 4989600 6652800 475200 1995840C
hy's -1 1 1 1 -1 7 25 09 4153 1249 277 —223

30 4 -1 3 2 20 570240 133056 6652800 453600 6652800 33264001995840(
hy's 1 -1 13 1 -2 —2591 -—24979 -1741 13 17

20 3 1 -2 12 5 155925 831600 237600 1247400 831600 831600 4989600
hy's -1 5 -10 137 2 529 653 49319 559 -179 23

5 4 3 5 -5 60 99792 332640 15120 498960 23760 332640 498960

Table 3. Coefficients of main formulae for y";, j = 0(1)5

[24) a a as Ay as Bo B1 B2 B3 Bs Bs Be
K47, 15 =77 107 67 -5 —67 650899 4476217 1286639 57881 —7649 6527
4 6 6 -3 12 6 748440 4989600 9979200 7484400 4989600 4989600 299376(

R%y", 5 -5 -1 7 101 2851 83773 —229219 —252347 7129 2423 ~103
6 4 3 6 12 14968800 9979200 4989600 14968800 4989600 9979200 299376(

Ry, -1 4 =5 Y| 2379 11069 179219 15613 689 ~283 283
12 3 2 3 12 0 11975040 9979200 19958400 14968800 19958400 9979200 598752(

R2y", -1 s | 283 ~323 24119 65969 24119 ~323 283
12 3 2 3 12 59875200 4989600 19958400 7484400 19958400 4989600 598752(

R2y", -1 7 1 5 5 59 ~881 222531 -20926  —90983 269 ~103
12 2 6 3 4 6 29937600 1247400 1247400 467775 9979200 623700 299376(
Ry =5 61 107 -77 15 41 70073 1791667 6600103 1347487 —16123 6527
6 12 -13 6 6 4 5987520 9979200 9979200 14968800 9979200 9979200 299376

Table 4. Coefficients of main formulae for y"’;, j = 0(1)5

a a; a, az as Bo B1 B B3 B4 Bs Bs

Ry, —17 71 —59 9 —41 7 —395 —54319 —248561 —22541 —4513 29 —13

4 4 2 4 48384 120960 241920 60480 241920 24192 80640

B3y, -7 25 -17 11 =7 1 -5 871 -17519 —1219 ~ 409 25 31
4 4 2 2 4 4 48384 120960 241920 20160 241920 24192 241920

3y, -1 -1 5 -7 7 -1 11 25 15527 731 —409 25 31
4 4 2 2 4 4 80640 24192 241920 12096 241920 24192 241920

K3y 1 —7 7 -5 1 1 —11°  “i21 2707 4153 401 25 31
1 4 2 2 4 4 80640 120960 48384 60480 241920 24192 241920

3y, -1 7 -11 17 -25 7 11 121 13543 4651 —2393 121" =31
4 4 2 2 4 4 80640 120960 241920 60480 241920 120960 241920

3y, -7 41 —49 59 -71 17 -17 184 91529 61799 109457 851 13

4 4 2 2 4 4 241920 120960 241920 60480 241920 120960 80640
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Table 5. Coefficients of main formulae for y](.i”), j=0(1)5

ay a a, az ay as Bo B B2 B3 B4 Bs Bs
hty(? 118687 11679 16201 49577 —1751 1951 —4883

3 -14 26 24 11 2 1814400 11200 13440 90720 40320 100800 1814400
hty(? —5003 10279 66761 1823 2173  —481 817

2 9 16 -14 6 -1 1814400 151200 120960 9072 120960 151200 1814400
Rty(? 757  —4247 —16901 —239 -11 113 -113

1 -4 6 -4 1 0 1814400 302400 120960 18144 24192 302400 1814400
Rty -113 43 —-619 —6239 —619 43 -113

0 1 -4 6 -4 1 1814400 50400 40320 45360 40320 50400 1814400
hty(? —53 2573 26213 48641 9367 —1787 817

-1 6 -14 16 9 2 1814400 302400 120960 90720 120960 302400 1814400
h4y§m 937 1979 54709 58951 119297 12739 —4883

-2 11 -24 26 -14 3 1814400 151200 120960 45360 120960 151200 1814400

. o . 4 .
Table 6. Coefficients of main formulae for y](. ), j=0(1)5

[24] (251 ar az ay Qs Bo B1 B2 Ba By Bs Be
Sy —2453 —8783 —5519 —301 6107 —499 275

-1 5 -10 10 -5 1 8064 6048 24192 432 24192 6048 24192
RSy 197 —11359 —-120517 —-1159 -9887 661 -13

-1 5 -10 10 -5 1 17280 30240 120960 15120 120960 30240 4480
hsygv) —347 241 —26539 —1741 673 —383 191

-1 5 -10 10 -5 1 120960 6048 120960 5040 17280 30240 120960
RSy 13 -5 35099 4153 —8831 421 -191

-1 5 -10 10 -5 1 8064 864 120960 15120 120960 30240 120960
RSy -187 629 21557 13529 52807 —137 13

-1 5 -10 10 -5 1 120960 30240 120960 15120 120960 4320 4480
hsyg) 71 —-83 1033 631 29357 2321  -275

-1 5 -10 10 -5 1 24192 6048 3456 1008 24192 6048 24192

The formulae in (17) and (18) together form the block method we refer to as the Boundary Value Method
(BVM) applied for solution of BVPs, the formulae in (17) and (18) for n = 0(6)N — 6 are considered at the
same time where N is the number of subintervals of the interval [a, b].

2.2 Analysis of the methods
In this section, the local truncation error, order, consistency and convergence of theBVM are discussed.

2.2.1 Local truncation error and order

The methods derived in (17) and (18) are associated with the linear differential operator L[y(x); h] defined
by

LIy(x); hl = y(x + jh) = Ti=o lay(x + jh) — h® $f_g Bf (x + jh) (19)
and
Ly k] =y O +jh) =35 (T ay(x +jh) + h® Ty Bf (x + jh)) (20)

Expanding (19) (also (20)) in Taylor series, we obtain the following linear combination of the constants C;'s
of the form

Ly(x); h] = Coy(x) + Cihy'(x) + Ch*Y" (%) + -+ + Coh%y P (x) + 0 (R®*+D) €2y
So that, the LMM (17) is of order p if

Co=C=Cr==Cps=0, and Cpyg#0
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in which
LIy(x); h] = CpyshP*Cy@*O(x) + 0(hP*7) (22)

In this case, Cp,¢ is the principal error constant, see [16]. The local truncation error associated with the main
methods (17);

(14) ()14 (13) ()13 (13) ()13
Vv = —ﬂi' 0(]«115’ hv’o = M+ 0(h14)’ hzv”o = _ oyt en + 0(]’114), hSVWO —
57600 60540480 950400
TYZCONE | (), hv{? = BT | () sy = BTN g iy
997920 86400 362880

The local truncation error associated with the additional methods (18) are are obtained in the same way.
Thus, the methods (17) and (18) are consistent (with p > 1).

2.3 Convergence analysis
The convergence of the method is investigated using the a Toeplitz seven-band matrix. Consider the system

{l AN—k1Y = hGBN_le‘I'T, (23)

iil. Ay_i,e = h°By_, 6F +1+g,
where
T
e= [ekl, ...,€N_1] ;e =y(t) —yi

6F = [f(tkl,y(tkl),y’(tkl), ""y(s)(tkl)) = fipr o f (o, Y (En-1), Y (En-1), e,y (tyoq)) —
JN-17,

F= [f(xkl'Y(xkl)'y'(xkl)r ""y(s)(xkl))’ o fOn—1, Y (n-1), Y (Xn—1)s ""y(s)(xN—l))]T'

Y = [Yi,, - ¥n-1]"  are(N —k;) X lvectors

’Olkl (247
(42}
Ayn-, = f
% % akl
| Ay o Q]
[Br, - Bx 1
Bo . -
BN—kl = N ' ' . ﬂ (24)
. . e
Bo - B,

are all (N — ky) X (N — k;) matrices. 7 is the vector containing all local errors while g, contains the errors
at the boundary.
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31" (ae; — h®BiSF)
Zkl 2 (0( €iy1 — h ﬁ16F1+1)

Je Zg_kl (aiekl—l - hGﬁi5Fk1—1) (25)

Zkz ! (al+k1+leN kq+i-1 h6ﬁi+k1+15FN—k1+i—1)

s i=1 (ai+kleN—k1+i—1 —h .Bi+k15FN—k1+i—1)

By the Boundary value method [11], fix the values k = 3, k; = 3. Specifically,

120 -15 6 -1
—-15 20 —-15 6 -1
6 15 20 -15 6 -1
-1 6 —15 20 —-15 6 -1
Ay s = (26)
-1 6 —-15 20 -15 6 -1
-1 6 —15 20 —-15 6
-1 6 —-15 20 15
-1 6 —15 204
(16612 6567 246 1
6567 16612 6567 246 1
246 6567 16612 6567 246 1
. 1 246 6567 16612 6567 246 1
By_3 = =1 @7
1 246 6567 16612 6567 246 1
1 246 6567 16612 6567 246
1 246 6567 16612 6567
1 246 6567 16612
2189
~ 30240 hé8fy + eo ——h66f1 —6e — 0080 hés8f, + 15 e,
6 6
30240h 6fi+e —mh 6f, —6e,
1
" 30240 h°6f, + e,
ge = |i (28)
6
30240h Ofw +en
_mhsafzv —bey— 30240h Sfns1t+ enst
2189 1
~ Tooso h65f1v +15ey — _h6 Ofns1— 6 engr — 30240 h65f1v+2 + enyz]

2.3.1 Determinant of Ay_3
Following Hoskins and Ponzo [9], the determinant of Ay_5 is given by the following theorem
Lemma 2 [17]. If' N = 3, then determinant of the sixth order difference operator matrix Ay _s is given by

_(N—-2)(N—1)2N3 (N +1)? (N +2)
8640

det Ay_5 =
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2.3.2 The inverse of Ay_3

Lemma 3 [17]. Let Ay_5 be an even order difference operator matrix (26) then from [17], the elements on
the diagonal and below are given by

_ (N=2-DV-1-D(N-D) ; . . . g
W =~ soaaae et [+ D +2)( +2)( + D~ DG =~ DN + DIV +2)

—2i(+2)( +3)G +2)G + 1 — DV — 2)(N +2) (29)
FHE+DG+DG+DG+DG+ DN -DWN=2)], i=j

Since Ayl; is a symmetric matrix, hence on interchanging i and j in the previous equation, the terms for ; j
for i < j can be obtained. The results obtained so far are summarized in the next lemma.

Lemma 4 [17]. The symmetric matrix Ay _3 is irreducible and monotone and if Ayl s = [a;;], then A;,ikl is
symmetric, satisfying A™1 > 0 where
@ = = g e D[+ 1D + 2 +2)( + Dili = D =D + DN +2)
— 2 +2)(+3)( +2)( + Dili — DN = 2)(N +2) (30)
HGE+DE+DE+DE+2)E+DIWN-1DWN=2)], i<j

In particular, for N = 10

252 504 630 600 450 252 84
504 1232 1680 1680 1300 744 252
630 1680 2555 2730 2205 1300 450
ARt, =$ 600 1680 2730 3180 2730 1680 600 (31)
450 1300 2205 2730 2555 1680 630
252 744 1300 1680 1680 1232 504
84 252 450 600 630 504 252

2.3.3 The infinity-norm of Ay!,

The inverse can be used in verifying the formulas (32) and (33) which will be established next. Define
Ri = Z?]z—f aij, then

” A_l ”oo= maXilRil'
It follows that

1
Ri =
720

G+DE+2DE-NGE-N+2)({—N+1)i (32)

This gives

ari 1 o 4 _ 30N 20N _ 22
n —720(21 N+2)[3i*—6i3(N—3)+3i*(N—-3) 33)
—63+6i(N—3)2-13i%+22i(N—3)+2(N—3)2+16i+10(N—-3)+12] =0

Consider R; as a function of real variable i. Then R; is symmetric in the interval [1, N — 3] and it can be
easily shown that R; has its maximum for i = (N — 2)/2 for even values of N while R; has its maximum for
i =(N—3)/2for odd N. Now d?R;/di? < 0 for this value of i since Ay_5 is a positive definite matrix.
The infinity norm of Ay'; must be bounded to an integral value of i. Thus,

Il AyLs o< Rin—2)2-
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Substituting { = (N — 2)/2 in (32) to find R(y_z)>. This gives

- 1
Il Axis o< Rin—2)2 = oo (N + 2)2N?(N —2)?, forevenN G
=—1_(N=3)(N = 12N + 1)2(N + 3)foroddN

" 46080

Lemma 5 [17]. The infinity norm of Ay*; is given by

I ANYs S Rv-2y/2 = = < Rov-zyyz = T;soh-ﬁ(b —a—-5n(b-a-30 b-a—-h?2b-a+h) (35)
= 0(h™%)
for odd N.
Proof. The proof follows easily, using
t;=a+ih, i=01-,N+2 t,=aq, tyaz=b, h=0B-a)/(N+2)
and (35)
Lemma 6 [17]. The matrix Ay_5 is nonsingular, provided that LP > 0 where
P =(1/46080) h™¢(b —a —5h)(b—a—3h)*(b—a—h)’(b—a+h) = 0(h™°),
and L is the Lipschitz constant of f.

2.3.4 Error bound

The error equation is (23i.). Let L be the Lipschitz constant of f. Since for sufficiently large N, the matrix

Ap_3 is always nonsingular, then it can be shown that

Il ARLs llooll 7 llo
1—hS Il Ayts oo LIl By_3 II

lelleo<

3389
362880

where || T l,= hB3My,, My, = max |y (x)|, IBy_szll= —1,

Thus,

(3389 M,,h~6 + 362880 Gh™13 + 362880 Eh~18) Ph!3
362880(1 + LP)

lel, <
=_]h13

where the constant

] (3389 M;,Ph™% + 362880 PGh™ '3 + 362880 PER™18)

~ 362880(1 + LP)

The summarization of the details above are presented in the next theorem.

Theorem 7 [17]. Let y(x) be the exact solution of the continuous boundary value problem (1.1) and let y;,

i=0,1,...,N =3, satisfy the discrete boundary value problem (1i). Further, if e; = |y(t;) —yil, th
Il E llo= O(h3).

en

10
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3 Numerical Examples

In this part, we implement our derived method using numerical examples to show the high level of accuracy
and efficiency of this method.

Example 1.. Consider the following nonlinear BVP discussed in [ 18] of the form

YO () =e*y?(0). x€[01],
y(O) — y”(O) — y(l:V)(O) =1 (36)
YD) =y' M) =y®() =e

which has an exact solution of y(x) = e*.

Table 7. Comparison of maxium absolute error for different values of h

h 1/8 1/16 1/32 1/64
BVM 6.94 x 10714 3.34 x 10716 1.39x 10710 4.25x 1077
Khan and Khandelwal [18] 2.25x 1077 219x10°8 1.94x10~° 1.35x107°

It can be seen that the BVM with different step sizes performs better than the method in [18]
Example 2. Consider the boundary value problem, discussed in [10,19].

yO +xy = (=24 + 11x + x%)e*. x €[0,1]
y(0)=y(1)=0

n n (37)
y'(0)=0, y'(1) = —4e,
y@(0) = -8, y@) (1) = —16e.
The analytical solution of the above problem is y(x) = x(1 — x)e*.
Table 8. Absolute error with h = 0.1 obtained for example 2

x Error for BVM Error for Cubic B-Spline [10]
0.1 3.45x 10712 3.81x107°
0.2 1.98 x 10712 1.59 x 107
0.3 2.71x 10712 341x107*
0.4 9.87 x 10712 5.33x107*
0.5 712 x 10712 6.74x107*
0.6 2.88 x 10712 7.08 x 107+
0.7 3.21x 10712 6.08 x 107*
0.8 9.45 x 10712 391x107*
0.9 1.10 x 10712 1.35x107*

030

020

015

010

00

X

Fig. 1. Showing the exact solution in comparison with numerical solution
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10 4L //_\ ]
Absolute  error for BVM
10‘6 L
5 Absolute  error for Bspline
g 008}
10 10 L
00 02 04 0.6 0.8

X

Fig. 2. Graph comparing the absolute errors for BVM and Cubic B-Spline in [10]

Table 9. Comparison of maximum absolute errors for example 2

h 1/8 1/16 1/32 1/64
BVM 1.25x 10711 472 x 1071 9.66 x 10717 1.94 x 10717
Khan and Sultana [19] 2.25x 1077 2.19x 1078 1.94 x107° 1.35x107°

Similarly as in example 1, the BVM with different step sizes performs better than the method in [19]

Fig. 1 shows that the numerical solutions compares favourably with the exact solution for h=0.1. Fig. 2
shows the comparison of absolute error obtained for example 2 with the BVM and the method in [10]. This
evidently shows that the BVm performs better thatn those compared with.

Example 3. Consider the boundary value problem, discussed in [10,20]

yM(x) - y(x) =—6¢e*
y0)=1 y(1)=0,

y'(0) =0, ¥y'(1) = —e,
y"'(0) =-1, y"(1) = —2e.

The analytical solution of the above problem is y(x) = (1 — x)e*.

1.00 [~

070 -

> 050 |

030 1

0.0

X

Fig. 3. Graph of exact and numerical solutions for h = 0.1
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Table 10. Absolute error with h = 0.1 obtained for Example 3

X Error for BVM h = 0.1. Error for Cubic B-Spline [10]
0.1 1.23x 1071° 1.18 x 107°
0.2 1.01x 10718 429x 1075
0.3 1.27 x 10715 8.53x 107°
0.4 136 x 10718 1.28 x 107*
0.5 1.11x 10718 1.59 x 107*
0.6 4.27x 10715 1.67 x 107*
0.7 551x 10718 1.45x 107*
0.8 7.28x 10718 9.47x 107
0.9 1.29x 10715 4.09x 10~°

Table 10. showing the comparison of absolute error for BVM and Cubic B-Splne in [10] for h = 0.1

0.001 E T ; ! . .
1075 //—J\ |
1057 E

5 Absolute error for BVM

L% 10091
1oL Absolute  error for Bspline
oo L
10015 |

00 02 04 0.6 0.8

Fig. 4. Graph of error obtained for BVM and Cubic B-spline [10] for h = 0.1

Table 11. Comparison of maximum absolute errors for example 3

h 1/8 1/16 1/32

BVM 2.974x 10715 2.570 x 10~ 2.3855x 10717
Pooja and Talat Sixth-order [21] 1.74 x 10711 8.11x 1071 9.77 x 1072
Siddigi and Akram [20] 137 x 10°° 1.08 x 107 2.25%x 1078

Considering different step sizes, the maximum errors obtained for Examples 1-3 shows clearly that the
BVM compare favourably with the methods in the cited papers.

Fig. 3 shows that the numerical solutions compares favourably with the exact solution for h=0.1. Fig. 4

shows the comparison of absolute error obtained for Example 3 with the BVM and the method in [10]. This
evidently shows that the BVM performs better thatn those compared with.

4 Conclusion

The Boundary Value Method proposed in this work was applied to solve sixth-order linear and nonlinear
boundary value problems. This method has been shown to be efficient in terms of its applicability and as
well as maximum the global errors obtained in the examples presented. The comparison of this method with
other existing ones shows that it has compares favourably and its thus recommended for solution of general
sixth order BVPs.
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