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Abstract 
 

In this paper, a new lifetime distribution called the Inverse Sushila Distribution (ISD) is proposed. Its 
fundamental properties like the density function, distribution function, hazard rate function, survival 
function, cumulative hazard rate function, order statistics, moments, moments generating function, 
maximum likelihood estimation, quantiles function, Rényi entropy and stochastic ordering are obtained. 
The distribution offers more flexibility in modelling upside-down bathtub lifetime data. The proposed 
model is applied to a lifetime data and its performance is compared with some other related distributions. 
 

 
Keywords: Inverse Sushila distribution; Inverse Lindley distribution; lifetime data. 
 

1 Introduction 
 
Among numerous branches of statistics is the survival and reliability analysis. The branch has usefulness in 
engineering, health, demography and in industries. Time to failure of different systems can be seen as 
random variables and hence the relevance of modelling data from such system. 
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Several lifetime models pervade literatures and improvements are always made to improve efficiency, 
flexibility and the fits for lifetime data. The probability distribution (1) of the one-parameter Lindley 
distribution, Lindley [1] which is a close form of the more popular exponential distribution (2) has received 
little attention until recently. This is due to the recent trends in general applicability of lifetime data in 
reliability engineering and survival analysis. Ghitany, Atieh, & Nadarajah [2] and Krishna & Kumar [3] 
characterised (1) and concluded that it outperforms (2) due to its flexibility and general applicability. 
 

�(�|�) =
��

1 + �
(1 + �)����;       �,� > 0                                                                                                                  (1) 

 

�(�|�) = �����;       �,� > 0                                                                                                                                         (2) 
 

Shanker et al. [4] proposed a two-parameter (λ and θ) distribution named the “Sushila distribution” with (1) 
as special case. Moments, failure rate function, mean residual life function and stochastic ordering of the 
distribution were also discussed. The Sushila distribution is a mixed distribution between exponential 

distribution �
�

�
� and gamma distribution �2,

�

�
� with the probability distribution function and cumulative 

distribution function given as (3). 
 

�(�|�,�) =
��

�(1 + �)
�1 +

�

�
���

�

�
�;       �,�,� > 0                                                                                                  (3) 

 

�(�|�,�) = 1 −
�(1 + �)��

�(1 + �)
��

�

�
�;       �,�,� > 0                                                                                                    (4) 

 

The Inverse Sushila Distribution (ISD): 
 

The distribution is a 2-parameter mixture of inverse Gamma distribution with (scale=
�

�
) and inverse 

Exponential distribution with (shape=2 and scale=
�

�
), with mixing proportion � =

�

(���)
. 

 

A random variable X follows Inverse Sushila Distribution is denoted with �~���(�,�) with the pdf and cdf 
given as (5) and (6) 
 

�(�) =
��

��(1 + �)
�
1 + ��

��
���

�

��;       �,�,� > 0                                                                                                      (5) 

 

�(�) = �1 +
�

��(1 + �)
� ��

�

��;              �,�,� > 0                                                                                                    (6) 

 

Note: If � = 1, the ISD becomes the Inverse Lindley distribution by Sharma et al. [5]. 
 
The first derivative of (5) is obtained as: 
 

��(�) = −
��

��(1 + �)
�
2���� − ��� + 3�� − �

��
� ��

�

��                                                                                            (7) 

 

Equation (7) is a unimodal function that attains its maximum value at 0. Hence, the mode of �(�) is given in 
(8). This is obtained by equating (7) to 0 and isolating solution for x. 
 

�� =
� − 3 − �(� − 3)� + 8�

4�
                                                                                                                                     (8) 

 

This article is sectionalized as follows: Section 1 introduces the new distribution along with its pdf and the 
cdf. Section 2 investigates the reliability functions of the ISD. These include the hazard rate, survival rate, 
and the cumulative hazard rate. The third section investigates various mathematical properties of the ISD 
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along with their respective proofs. These include the Order statistics, moments and moment generating 
functions, maximum likelihood estimation, Rényi entropy, stochastic ordering, and quantiles function. The 
fourth sections presents some related distribution to the proposed distribution and compared the performance 
of the new distribution with some of the related ones that pervade literatures. The final section concludes 
based on the findings from the research. 
 

2 Reliability Function for ISD 
 
If a random variable �~���(�,�), the survival function, the hazard (failure) rate function, and cumulative 
hazard rate function are given in (9), (10) and (11) respectively. 
 

�(�) = 1 −
(��� + �� + �)

��(1 + �)
��

�

��                                                                                                                                  (9) 

 

ℎ(�) =
��(1 + ��)

��(1 + �)�� �1 −
(��������)

��(���)
��

�

���
��

�

��                                                                                                     (10) 

 

�(�) = −���1 −
(��� + �� + �)

��(1 + �)
��

�

���                                                                                                                (11) 

 

Plots of the pdf, cdf, hrf, and survival function of the ISD distribution for some selected parameter values are 
shown in the figures below. 
 

 
 

Fig. 1. Plots of the pdf of the ISD for different values of λ and θ 
 

 
 

Fig. 2. Plots of the cdf of the ISD for different values of λ and θ 
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Fig. 3. Plots of the hazard rate function (hrf) of the ISD for different values of λ and θ 
 

 
 

Fig. 4. Plots of the Cumulative hrf of the ISD for different values of λ and θ 
 

 
 

Fig. 5. Plots of the survival function of the ISD for different values of λ and θ 
 
 



 
 
 

Adetunji et al.; ARJOM, 16(8): 28-39, 2020; Article no.ARJOM.57696 
 
 
 

32 
 
 

3 Properties of the Inverse Sushila Distribution 
 
3.1 Order statistics 
 
Let X1,n  <  X2,n  < ... < Xn,n be the order statistics of a random sample of size n with any distribution, then if 
�~���(�,�), then the pdf of the kth order statistics is given as: 
 

 ��,�(�) =
�!

(���)!(���)!
�(�)[�(�)]���[1 − �(�)]��� 

 
Hence, the kth order statistics of random variable �~���(�,�) is given as (12) 
 

��,�(�) =
�!��(����)�

�
�
���

(��������)

��(���)
�
�
�
���

���

���
(��������)

��(���)
�
�
�
���

���

(���)!(���)!��(���)��
                                                                           (12)  

 
For k = 1 and k = n, the 1st and nth order statistic for �~���(�,�) are respectively given as (13) and (14). 
 

��,�(�) =
�!��(����)�

�
�
�����

(��������)

��(���)
�
�
�
���

���

(���)!��(���)��
                                                                                                           (13)  

 

��,�(�) =
�!��(����)�

�
�
���

(��������)

��(���)
�
�
�
���

���

(���)!��(���)��
                                                                                                                (14)  

 

3.2 Moments and moments generating function 
 
Proposition 1: Let �~���(�,�) with pdf as given in (4), then the rth raw moment (moment about the origin) 
is given by (15) while the moment generating function, MGF, is given by (16). 
 

��
� = �

�

�
�
� (1 − �+ �)

(1 + �)
Γ(1 − �)                                                                                                                                  (15) 

 

��(�) = �(���) = �
��

�!

�

���

�
�

�
�
� (1 − � + �)

(1 + �)
Γ(1 − �)                                                                                          (16) 

 
Proof of Moments about mean 
 

��
� = �(��) = � ��

�

��

�(�) dx 

      = � ��
�

�

��

��(1 + �)
�
1 + ��

��
� ��

�

�� dx 

      =
��

��(1 + �)
�� ������

�

�� dx+ � �������
�

�� dx

�

�

�

�

� 

 

Let �= �� and � =
�

�
, then dx=

�

�
dy. Therefore, 
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Recall that if a random variable X has Inverse Gamma distribution, then: 
 

� ��(���)�
�
�

�  dy

�

�

=
Γ(�)

��
 

 
Therefore, 
 

��
� =

��

��(1 + �)

1

����
�
Γ(2 − �)

����
+
Γ(1 − �)

����
� 

      =
��

��(1 + �)

1

����
�
(1 − �)Γ(1 − �) + �Γ(1 − �)

����
� 

      = �
�

�
�
� (1 − �+ �)

(1 + �)
Γ(1 − �) 

 
Proof of Moments Generating Function 
 

��
� = �(���) = � ���

�

��

�(�) dx 

      = � ���
�

�

��

��(1 + �)
�
1 + ��

��
� ��

�

�� dx 

 
Recall  
 

��� = �
����

�!

�

���

 

 
Therefore, 
 

��
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��

��(1 + �)
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��

�!

�

���

� �������
�

�� + �������
�

���

�

�

 dx 

 

Let �= �� and � =
�

�
, then �� =

�

�
dy  

 
Hence, 
 

��
� =

�����

(1 + �)
�

��

�!

�

���

�
Γ(2 − �) + �Γ(1 − �)

����
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��
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�!
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      = �
��

�!

�

���

�
�

�
�
� (1 − � + �)

(1 + �)
 Γ(1 − �) 

 

3.3 Rényi Entropy (RE) 
 
Rényi entropy measures the variation of uncertainty in the random variable by providing tools to indicate 
varieties in the distribution and analyze evolutionary processes in the distribution over time, Alkarni [6]. 
Rényi [7] gave the expression for the entropy as: 
 

Re(�) = �
1

1 − �
� log �� ��(�)dx�;                                  � > 0 

 
Proposition 2: If �~���(�,�), the RE is given as: 
 

Re(�) = �
1

1 − �
� log ���

�

�
�

����

(1 + �)�
����

�������
Γ(2� + � − 1) 

�

���

� ; � ≠ 1                                                       (17) 

 
Proof of Rényi Entropy 
 

Re(�) = �
1

1 − �
� log �� ��(�)dx� 

 

Re(�) = �
1

1 − �
� log �� �

��

��(1 + �)
�
1 + ��

��
� ��

�

���

�

dx� 

             = �
1

1 − �
� log �

���

���(1 + �)�
� (1 + ��)�������

��

��

�

�

dx� 

 
Recall 
 

(1 + ��)� =��
�

�
� (��)���

�

���

=���������
�

���
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1

1 − �
� log �

���

���(1 + �)�
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� ��������
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���

������
��
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�
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Re(�) = �
1

1 − �
� log ���

�

�
�

����

(1 + �)�
����

�������
Γ(2� + � − 1) 

�

���

� ; � ≠ 1  

 

3.4 Stochastic ordering 
 
Stochastic ordering is used to judge comparative behaviour of continuous random variable. A random 
variable X is said to be stochastically smaller than another random variable Y  (� ≤�� �) in the: 
 

(i)  Stochastic order (� ≤�� �) if ��(�) ≤ ��(�) for all x. 
(ii) Hazard rate order (� ≤�� �) if ℎ�(�) ≤ ℎ�(�) for all x. 
(iii) Mean residual life order (� ≤��� �) if ��(�) ≤ ��(�) for all x. 

(iv) Likelihood rate order (� ≤�� �) if  
��(�)

��(�)
 for all x is an decreasing function in x. 

 
The following theorem shows that �~���(�,�)  is ordered with respect to “likelihood ratio” ordering 
according to the model by Shaked & Shanthikumar [8]. 
 
� ≤�� � ⟹ � ≤�� � ⟹ � ≤��� � ⟹ � ≤�� � 
 
Proposition 3: Let �~���(��,��) and �~ ���(��,��). If �� ≥ �� and �� = �� (or if �� = �� and �� ≥ ��, 
then � ≤�� �. By the implication of the Shaked & Shanthikumar model, hence, � ≤��� �, � ≤�� �, and 
� ≤�� �. 
 
Proof 
 

��(�)

��(�)
=

��
�

��
�(����)

�
�����

��
� �

�
��
���

��
�

��
�(����)

�
�����

��
� �

�
��
���

 

            =
��
�(1 + ���)��

�(1 + ��)

��
�(1 + ���)��

�(1 + ��)
�
�
���������

�����  

 

For �� = ��  and �� ≥  ��  (or if �� =  ��  and �� ≥ �� ), then 
��(�)

��(�)
 is a decreasing function in x. By 

implication, � ≤�� �. Hence, � ≤��� �, � ≤�� �, and � ≤�� �. 
 

3.5 Quantiles function 
 
Given that �~���(�,�), obtaining formulas for the mean and the variance are quite tasking, because of 
complex algebraic expressions which involved integrals, the quantiles are quite easy to evaluate. 
 
Proposition 4: Let �~���(�,�), then the quantiles function of X, say Q(p) is given as: 
 

�(�) = −
�

�(� [− ��(���)(1 + �)�]+ 1)
                                                                                                                 (18) 

 
Hence, the first, second (the median), and the third quantiles of �~���(�,�) are respectively given as: 
 

�(�.��) = −
�

�(� [–0.25 ��(���)(1 + �)]+ �(1 + �))
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�(�.��) = −
�

�(� [–0.50 ��(���)(1 + �)]+ �(1 + �))
 

 

�(�.��) = −
�

�(� [–0.75 ��(���)(1 + �)]+ �(1 + �))
 

 
Proof 
 

Since �(�) = ���(�),��(0,1). This implies that ���(�)� = �. Substituting Q(p) for x in (5) and solve for 

�(�). 

 

���(�)� =
����(�) + ��(�) + ��

��(�)(1 + �)
�
�

�

��(�)   = � 

 

����(�) + ��(�) + ��

��(�)(1 + �)
�
�

�

��(�)   = � 

 

Multiplying both sides of the equation by − ��(���) gives: 
 

����(�) + ��(�) + ��

��(�)(1 + �)
�
��

�

��(�)
�����

  = −���(���) 

 

���(�)�
��

�

��(�)
�����

+ ��(�)�
��

�

��(�)
�����

+ ��
��

�

��(�)
�����

= −����(�)1 + ���(�)��
�(���) 

 

where − ���(�)1 + ���(�)��
�(���) is the Lambert W function of the real argument −���(���). 

 
The Lambert function is a complex function with multiple values which is defined as the solution for the 

equation �(�)�
�(�) = �, where u is a complex number. Hence, by isolating solution for �(�), obtained (18). 

 

�(�) = −
�

��W [– � ��(���)(1 + �)]+ �(1 + �)�
= −

�

�(� [− ��(���)(1 + �)�]+ 1)
 

 

3.6 Parameter estimation 
 
Theorem 1.5: If X1, X2, X3, ..., are independently and identically distributed random variables of sine n from 
an �~���(�,�), then the likelihood function of X is defined as (19). 
 

log L = 2� log(�) − 2� log(�) − � log(1 + �) + �log

�

���

(1 + ���) − 3�log

�

���

(��) −
�

�
�

1

��

�

���

                 (19) 

 
Proof of MLE 
 

L(θ,λ|x) =�
��

��(1 + �)
(1 + ���)��

���
�

�

���

�

���

 

                 = 
���

���(1 + �)�
�(1 + ���)��

���
�

�

���

�

���
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log L(θ,λ|x) = log ��
��

��(1 + �)
(1 + ���)��

���
�

�

���

�

���

� 

= 2� log(�) − 2� log(�) − � log(1 + �) + �log

�

���

(1 + ���) − 3�log

�

���

(��) −
�

�
�

1

��

�

���

 

 

The MLEs (�� and ��) of � and � are respectively obtained by solving the nonlinear equations ∑ (�|�,�) = 0�  
where ∑ (�|�)�  and ∑ (�|�)�  respectively represent the partial derivatives of the log-likelihood function 
derived in (19). For hypothesis testing and interval estimation of the two parameters, the observed 
information matrix ��(Φ) is required where: 
 

��(Φ) =

⎣
⎢
⎢
⎡
� log �

��

��log �

�� ��
��log �

�� ��

� log �

�� ⎦
⎥
⎥
⎤

 

 
Where 
 
� log �

��
= −

�

�
+

��
� + ���

+
���
��

 

� log �

��
=
2�

�
−

�

1 + �
−
��
�

 

��log �

�� ��
=
��
��

 

�� =���

�

���

 

�� =�
1

��

�

���

 

 

4 Applications 
 
The data on flood levels for the river Susquehanna in Pennsylvania over a 20 year period had been used to 
compare performances of distributions related to Inverse Sushila. The data was first reported by 
Dumonceaux & Antle [9]. Using R language (R Core Team [10]), the distributions in Table 1 below are 
compared with the proposed distribution and the results obtained are presented in Table 2. Oguntunde et al. 
[11] proposed the Kumaraswamy Inverse Exponential (KIE) distribution while the Inverse Exponential (IE) 
distribution was proposed by Keller & Kamth [12]. Sharma et al. [5] proposed the Inverse Lindley (IL) 
distribution while the Extended Inverse Lindley (EIL) distribution was introduced by Alkarn [6]. 
 

Table 1. Distribution functions of compare models 
 

Distribution pdf cdf 
Kum.. Inverse Exponential (KIE) 

�� �
�

��
� ���

�

��
�

�1 − ���
�

��
�

�
���

 1 − �1 − ���
�

��
�

�
�

 

Inverse Exponential (IE) �

��
���

�

�� ��
�

� 

Inverse Lindley (IL) ��

1 + �
�
1 + �

��
� ��

�

� �1 +
�

(1 + �)�
� ��

�

� 

Extended Inverse Lindley (EIL) ���

���
�
����

�����
� �

�
�

��  �1 +
��

(� + �)��
� �

�
�

�� 
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Table 2. Parameter estimates, Log-likelihood and AIC of competing models 
 

 Par1  Par2 Par3 Log-likelihood AIC Rank 
ISD 0.0000542 0.0000428  4.291 -4.583 2 
KIE 0.266 37.699 6.177 15.411 -24.822 1 
IE 0.394   -2.740 7.481 4 
IL 0.635   0.585 0.829 3 
EIL 0.580 1.964 479.635 -120.421 246.842 5 

 
Table 2 shows the summary of the result using the flood data for the proposed ISD and other related 
distributions. I can be observed that only KIE outperforms the ISD. This may not be unconnected with the 
fact that the KIE is a compounded distribution with an extra parameter and hence extra flexibility. 
 

5 Conclusion 
 
A new two-parameter distribution called the Inverse Sushila Distribution (ISD). The distribution is a mixture 
of Inverse Gamma and Inverse Exponential distributions. The new distribution offers flexibility in modelling 
upside-down bathtub lifetime data.  Various properties of the new distribution (including the pdf, cdf, hazard 
rate function, survival function, cumulative hazard rate function, order statistics, moments, moment 
generating function, maximum likelihood estimation of parameters, quantile function, Rényi entropy and 
stochastic ordering are obtained. The performance of the new distribution is compared with some related 
distribution using real life data and the result showed that it competes with favourably. 
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