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Abstract 
 

An efficient quadrature formula was developed for evaluating numerically certain singular Fredholm 
integral equations of the first kind with oscillatory trigonometric kernels.  The method is based on the 
Lagrange interpolation formula and the orthogonal polynomial considered are the Legendre polynomials 
whose zeros served as interpolation nodes. A test example was provided for the verification and 
validation of the rule developed. The results showed the convergence of the solution and can be improved 
by increasing �. 

 
 
Keywords: Singular kernel; oscillatory kernel; lagrange interpolation; orthogonal polynomial; legendre 

polynomial. 
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1 Introduction 
 
The Fredholm integral equations of the first kind with oscillatory kernels: 
 

�
����

� − �

�

��

�(�)�� = �(�), � ≥  0, �� = −1, −1 < � < 1,                                                 (1) 

 
where  f is a given continuous function, and � an unknown function, have wide applications in mathematics, 
physics, engineering and other applied and computational sciences [1].  If � is large, the integrand is highly 
oscillatory and in most cases the integral equation cannot be solved analytically and so, there is need for 
numerical methods. 
 
Many efficient methods have been developed for the evaluation of oscillatory integrals. The earliest 
numerical method for evaluating rapidly oscillatory functions were based on the piecewise approximation by 
second-degree polynomials over an even number of sub intervals and then integrating exactly out the 
crippling oscillatory factor [2].  An improvement on the Filon's method was done by Flinn [3] whose 
approximation used fifth-degree polynomials. Stetter [4] used the idea of approximating the transformed 

function by polynomials in 
�

�
.  Miklosko [5] proposed to use an interpolating quadrature formula with the 

Chebyshev's nodes. Piessens and Poleunis [6] approximated the function by a sum of Chebyshev 
polynomials. Ting and Luke [7] approximated integrals whose integrands are oscillatory and contain 
singularities at the end points of the interval of integration by expanding the function in series of orthogonal 
polynomials over the interval of integration with respect to the weight function. Okecha [1] developed 
algorithms based on the modified Lagrange interpolation formula, Legendre polynomial and the Christoffel-
Darboux formula to evaluate Cauchy principal value integrals of oscillatory kind. Different numerical 
techniques like collocation and Galerkin’s methods [8,9], asymptotic method [10], generalized quadrature 
rule [11], and modified Clenshaw-Curtis method [12] have also been developed.   

 
Motivated by the work of Okecha [1], the application of the collocation technique to provide solutions of the 
Fredholm integral equations of the form of Equation (1) is of concern here. The integral in Equation (1) is 
oscillatory and has a singularity of the Cauchy type.  To deal with this pertinent problem, a method based on 
the Lagrange interpolation formula and on properties of orthogonal polynomials is presented here.  The 
orthogonal polynomials that will be considered are the Legendre polynomials. Suppose ���� is the Lagrange 
interpolation polynomial of degree n-1 interpolating to �  at the zeros  ��,��,��,⋯ ,��, of the Legendre 
polynomial �� of degree �. Then, by the Lagrange interpolation formula, 
 

����(�)= �
��(�)�(��)

(� − ��)��
′(��)

�

���

+ ��(�) ,                                                                                                                        (2) 

 
Where 

 

��(�)=
�(���)(��)

(� + 1)!
� �� − ���

�

���

,   �� ∈  (− 1,1)                                                                                         (3) 

 
is the error due to the interpolation formula. 

 

2 The Approximate Solution Methods 
 
By the substitution of Equation (2) in Equation (1),  
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�
�(��)

��′(��)

�

���

�
��(�)

(� − ��)(� − �)

�

��

�� + ��(�,�)= �(�),                                                                           (4) 

 

is obtained and  ��(�,�)= ∫
������(�)

���

�

��
�� is the error due to the quadrature rule.  Subsequently, a bound for 

��(�.�) is obtained.  Applying the Christoffel-Darboux formula [13] to Equation (4) gives  
 

�
�(��)������

��
′(��)������(��)

�

���

�
��(��)��(�,�)

��

���

���

 = − �(�),                                                                           (5) 

Where 

 

��(�,�)= �
������(�)

� − �

�

��

��,                                                                                                                          (6) 

 

�� = ∫ � (�)��
�(�)��

�

�
,   ��(�)= ���

� + ⋯ + �� and  �� is the coefficient of the term �� in ��(�).  

 

However,  

 

��
′(�)=

����(�)− �����(�)

�� − 1
, � ≠ ± 1.                                                                                          (7) 

 

Thus, from Equation (5) gives 

 

�
�(��)(��

� − 1)

�����(��)(� + 1)����(��)

�

���

�(2� + 1)��(��)��(�,�)

���

���

= �(�).                                           (8) 

 

The Legendre polynomials ��(�) satisfy the recurrence relation 

 

(1 + �)����(�)− (2�+ 1)���(�)+ �����(�)=  0                                                                                  (9) 

 

and from Equations (6) and (9), it can be obtained that [1] 

 

(1 + �)����(�,�)= (2�+ 1)���(�,�)− �����(�,�)+ (2�+ 1)���(�),                                          (10) 

 

Where 

 

 ���(�)= ∫ ������(�)��
�

��
                                                                                     (11) 

 

and  ��(�) can be defined as [14] 

 

 ��[��(�)]= ∫ ���(��)��(�)��
�

��
= 2(− 1)����(�),�= 2�,� = 0,1,⋯                                        (12�)         

           

 Im���(�)�= ∫ ���(��)��(�)��
�

��
= 2(−1)������(�),�= 2� + 1,� = 0,1,⋯                            (12b)    

 

��(�) are the spherical Bessel functions of the first kind which can be evaluated as in [13 (Eq. 10.5)].  
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 Let ��,   � = 1,⋯ ,� defined as  

 

�� = −1 +
2

� + 2
(� + 1)                                                                                                                               (13) 

 

 

 

be the collocation points.  By placing these points in Equation (8),  

 

�
�(��)(��

� − 1)

�����(��)(� + 1)����(��)

�

���

�(2� + 1)��(��)�����,��

���

���

= �����,   � = 1,2,⋯ ,�            (14) 

 

is obtained and which can be written in matrix form as 
  � u = c ,                                                                                                                                                          (15) 

 
Where 
 

� =
�(��)(��

� − 1)

�����(��)(� + 1)����(��)
�(2� + 1)��(��)�����,��

���

���

, 

 
c� = [�(��),⋯ ,�(��)], u� = [�(��),⋯ ,�(��)] 

 

2.1 Techniques in evaluating  ��(�,�) 
 
According to Abramowitz and Stegun [13], Legendre polynomial ��(�) satisfy the recurrence relation [1] 
 

����(�)= (��+ ���)��(�)− ������(�),   �= 0,1,⋯                                                                            (16) 
 

with �� > 0,�� > 0,�� = 1,��(�)= �� + ���, ��� = 0.  By making use of Equations (11) and (16), it 
can be written that [1] 
 

                   ����(�,�)= (��+ ���)��(�,�)− ������(�,�)+ �����(�).                                                           (17) 
 
The starting value  
 

 ��(�,�)= �
����

� − �

�

��

��                                                                                                                                (18) 

 
and with the help of Equation (17), it is obtained that 
 

��(�,�)= (�� + ���)��(�,�)+ 2��
����

�
,                                                                                         (19) 

 
where ��,�� are obtained from the coefficients in  ��(�)= �� + ���.  From Okecha [1],  
 

 ��[��(�,�)]= ∫
�����

���

�

��
�� = ���(��)��(��)− ���(��)��(��)+ ���(��)��(��)−

���(��)��(��)                                                                                                                                            (20a) 
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��[��(�,�)]= ∫
�����

���

�

��
�� =

���(��)��(��)+ ���(��)��(��)− ���(��)��(��)− ���(��)��(��)                                        (20b),  
 
Where 
 

         �� = �(1 − �),   �� = − �(1 + �)                                                                                                 (21) 
 

and �� and �� are the cosine and sine integrals respectively. Furthermore, by applying Equation (19), 
 

��[��(�,�)]=
�����

�
+  � ��[��(�,�)]                                                                                                   (22a) 

 
��[��(�,�)]=  � ��[��(�,�)]                                                                                                                (22b) 

 
2.2 Error bound analysis 
 
An error bound based on the Lagrange interpolating polynomials shall be given but first consider the 
following lemma and theorem. 
 
Lemma 1.  Given any function �(�) of bounded variation in [�,�], there can be found a polynomial ��(�), 
of degree �, such that  
 

|�(�)− ��(�)|< �,                                                                                                                                      (23) 
 
whenever � → ∞,� →  0 (Jackson's Theorem) [15]. 
 
Theorem 1.  Let � be a function in ����[−1,1] and let ��  be a polynomial of degree ≤ � that interpolates 
the function � at (� + 1) distinct points ��,��,��,⋯ ,�� ∈ [−1,1] . Then, for each � ∈ [−1,1] there exists a 
point �� ∈ [− 1,1] such that ([16]): 

 

 �(�)− ��(�)= ∏ (� − ��)
�
���

�(���)��(�)�

(���)!
,                                                                                          (24)  

 
Let �(�) be the exact solution of Equation (1) and ��(�) be the interpolation polynomial of �. Assume that 
� is sufficiently smooth, then � as � = �� + �� can be written, where �� is the error term expressed as 
 

��(�)= � (� − ��)

�

���

�(���)��(�)�

(� + 1)!
                                                                                                           (25) 

 
If ��(�) is the Lagrange polynomial series solution of Equation (1), then ��(�) satisfies Equation (1) on the 
nodes and so ��(�) and ��(�) are the solutions of �� = � and ��� = �+ Δ�, where  
 

Δ� = �
������(�)

� − ��

�

��

��                                                                                                                                (26)    

 
Theorem 2.  Assume that �(�) and �(�) are Lagrange polynomial series solution and the exact solution of 
Equation (1) respectively, and let ��(�) denote the interpolation polynomial of �(�). If �,�,��,�  and Δ� are 
defined as above, and �(�) is sufficiently smooth, then 
 
                |�(�)− ��(�)|≤ � +  ��,                                                                                                                        (27) 

 
where  ����� �� �|�(��)− ��(��)|≤  � ,  [16] 
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Proof:  By adding and subtracting    ��(�)  on the left hand side of Equation (27), 
 

|�(�)− ��(�)|≤ |�(�)− ��(�)|+ |��(�)− ��(�)| 
 = |��(�)|+ |��(�)−  ��(�)|. 

 
is obtained. By using Equation (2) and Lemma 1,  
 

|�(�)− ��(�)|≤ �+ ����(�)

�

���

(����)− � ���(��)�� 

≤ �+ ����(�)

�

���

�|(��(��)− ���(��))| 

≤ �+ �  ����(�)

�

���

� 

 =  � +  � ����(�)

�

���

� 

≤ � +  ��, 
 

is obtained where that the upper bound of |∑ ��(�)
�
��� |= �∑

��(�)

(����)��
′ (��)

�
��� �is �. 

 

3 Numerical Example 
 

Consider the integral equation 
 

 �
sin(12�)

� − �

�

��

�(�)�� = �(�), −1 < � < 1 ,                                                                                     (28) 

 
where it is chosen that 
 

�(�)= � ��
�

��

sin(12�)

� − �
�� 

 
so that the exact solution will be �(�)= �� . The interpolation points are chosen to be the zeros of the 
Legendre polynomial, ��(�) of degree 6   
 

�� =  0.238619186083197, �� = −  0.238619186083197  
�� =  0.661209386466265,         �� = − 0.661209386466265 
 �� =  0.932469514203152,            �� = −  0.932469514203152            

 
Furthermore, the collocation points are chosen to be 
 

�� = −1 +
�

�
(� + 1),   � = 1,2,3,4,5,6                                                                                         (29) 

 
Equation (14) is used and � is set equal to 6 to obtain  
 

�
�(��)(��

� − 1)

42��(��)��(��)

�

���

�(2� + 1)��(��)��(��,12)

�

���
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= �
���(��

� − 1)

42��(��)��(��)

�

���

�(2� + 1)��(��)

�

���

��(��,12)                                                                       (30) 

 
��(��,12) is evaluated at the collocation points defined in relation (29) by using Equations (16), (17) and 
(18).  By making use of Equations (12a) and (12b)  
 

���(12)= 2��(12), ���(12)= −2��(12), ���(12)= 2��(12)   
 

is obtained. The spherical Bessel functions of the first kind, ��(�) can be evaluated as follows [13 (Eqn. 
10.1.11)] 
 

��(�)=
sin �

�
, ��(�)=

sin�

��
−
cos�

�
 

 ��(�)= �−
1

�
+

3

��
�sin�  −

3

��
cos�                                                                                                       (31) 

 
The spherical Bessel functions of the first kind satisfy the following recurrence relation [17] 
 

 ����(�)=
2� + 1

�
��(�)− ����(�), � ∈ �                                                                                       (32) 

 
With the help of Equation (31), the recurrence relation (32), and Matlab software, the different values of 
spherical Bessel functions are obtained. The �� and �� in the evaluation of ��(��,12) are evaluated from a 
truncated infinite series defined as 
 

��(�)= �
(− 1)�����(���)��

(2(� − 1)+ 1)(2(� − 1)+ 1)!

��

��

                                                                                         (33a) 

 

��(�)= � + ln|�|+ �
(−1)����

(2�)(2�)!

��

���

   ,                                                                                                    (33�) 

 
where � = 0.5772156649 is the Euler's constant. By solving the Equation (30), the results in Table 1 are 
obtained. 
 

Table 1. Approximation for ∫
���(���)

���

�

��
�(�)�� = ∫ ��

�

��

���(���)

���
�� 

 

�� Approx. (u) Exact(u)  Abs. error 

0.238619186083197 1.269495716853893 1.269495003157037  0.0000007136968593 

-0.238619186083197 0.787712023380540 0.787714798020595  0.000002774640055 

0.661209386466265 1.937132192317572 1.937133661565611  0.000001469248039 

-0.661209386466265 0.516219270254926 0.516226639307785  0.000007369052859 

0.932469514203152 2.540784657700185 2.540775918748306  0.000008738951879 

-0.932469514203152 0.393534762970032 0.393580556483172  0.000032926782852 
 
From the absolute errors shown on Table 1, it can be seen that the presented method is accurate and efficient 
and can be improved by increasing �. 
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4 Conclusion 
 
Motivated by the work of Okecha [1], an algorithm was developed to solve singular Fredholm integral 
equations of the first kind with oscillatory trigonometric kernel and a test example used was derived from 
example (c) of Okecha [1]. The results obtained shows the convergence of the solution and this can be 
improved by increasing �. 
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