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This paper investigates the computational performance of direct and inverse finite element methods for 
pricing American options. The underlying concept of the direct approach is similar to that of 
conventional finite element method. But the inverse approach is a relatively new development that 
involves trading the roles of financial variables. Based on the same constitutive model and linear 
elements, a performance analysis of the two approaches is carried out against the benchmark solution. 
Furthermore, we present experimental results on their accuracy-efficiency trade-off. Results indicate 
that although both approaches possess good convergence to the benchmark result, the inverse method 
is more efficient in term of the acceptable computing time and accuracy. 
  
Key words:  Direct finite elements, Inverse finite elements, American-style options, Black-Scholes  model. 

 
 
INTRODUCTION 
 
Derivative securities are financial instruments that derive 
their values from the performance of an underlying entity 
(asset, interest rate or index). Options are the most 
common derivative securities that frequently traded in 
financial market. An option is a financial contract that 
gives the holder a right, but not an obligation, to buy or 
sell a certain amount of a specified asset (the underlying 
asset) at a predetermined price (exercise price) on 
(European option) or before (American option) a 
prescribed future date (expiration date). While a closed-
form solution for European  options  can  be  found  using 

the Black-Scholes formula, pricing American option is 
much more challenging because of the nonlinearity 
associated with the early exercise policy. One popular 
way to proceed is to solve the option problems using 
PDE-based numerical techniques such as the finite 
element method (Zhang et al., 2015; Arregui et al., 2017). 

The finite element method (FEM), just like the other 
PDE-based numerical methods for pricing American 
options, whilst appealing, suffers from the slow rate of 
convergence. The method requires intensive computation 
before a solution of reasonable accuracy can be obtained.  
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Moreover, it is naturally difficult for the traditional FEM to 
accurately calculate the American option price near 
maturity because of its singular behaviour. Nevertheless, 
FEM can be made more efficient by considering its 
inverse formulation (inverse finite elements). The inverse 
finite element method (iFEM) is a numerical approach in 
which an optimization algorithm is coupled with finite 
element method to find optimal values for a set of target 
parameters which enter the finite element simulation 
(Chemisky et al., 2015). A user defined objective function 
serves to measure the optimality of the parameters. 
Studies involve the use of inverse finite element method 
(iFEM) are much more limited in the literature. The 
approach was initially used by Alexandrou (1989) in 
solving nonlinear problems associated with phase 
change, and with solidification. A characteristic feature of 
such a nonlinear problem is a demarcation line which 
separates two domains with different material properties. 
Comparably, American options have free boundary that 
separate the region where it is optimal to hold the option 
from where exercise is optimal. 

The essential concept of the iFEM is to find the location 
at which, the dependent variable has a predefined value. 
In other words, while the dependent variable is fixed, 
solution is obtained for the independent variable without 
inverting the equations. In the conventional finite element 
method, the question „what is the option price at a 
specific location (the nodes of the elements)?‟ is 
addressed. In contrast, the iFEM addresses the question 
„at what location (the nodes of the elements) does the 
option has a specific value?‟. The overall purpose of this 
paper is to investigate the advantages of switching the 
roles of dependent and independent financial variables in 
numerical valuation. Specifically, we compare the 
computational efficiency by carrying out a critical 
performance analysis of the two approaches against 
some benchmark solutions. The results of comparison as 
well as experimental results on their accuracy-efficiency 
trade-off are presented. 
 
 

Governing equation and boundary conditions 
 

To compare the computational performance of the dFEM 
and iFEM, we adopt the simple Black-Scholes model for 
an American put option without the dividend yield. The 
choice of this model allows the evaluation of our results 
within a framework that permits objective comparison 
with the existing solutions. Let 𝑃 𝑆    denote the value of 
an American put option, with S being the price of the 
underlying asset and t is the current time. Under the 
Black and Scholes (1973) framework, the differential 
system that governs the price of an American put option 
can be written as: 
 

 

 
 
 
 

                                        (1) 
 
in which   is the risk-free interest rate,   is the volatility,   

is the strike price, and 𝑇 is the expiration time. Equation 1 

is defined on 𝑆    𝑆                𝑇 , where 𝑆     is 

the optimal exercise boundary. The value of 𝑆     is a 

priori unknown and needs to be determined as part of the 
solution of the problem. At     𝑇, it has been established 
that 𝑆  𝑇     . 

To facilitate the development of the algorithms, we first 
introduce the dimensionless independent variables     in 
place of 𝑆  and  , respectively, and new dependent 

variables                 in place of 𝑃 𝑆    𝑆     as: 

 

 
 
With the new variables, Equation 1 becomes a 
dimensionless system, which includes a governing 
differential equation together with the following 
corresponding initial and boundary conditions 
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where B is defined on                        
   

 
. 

The parameter, γ is the dimensionless interest rate, and 

is related to the original risk-free interest rate by γ = 
   

   . 

Note that due to the introduction of the time to expiration 
  as the difference between the expiration time, 𝑇 and the 

current time,  , the terminal condition in Equation 1 has 
become an initial condition in Equation 2. Moreover, 
since the optimal exercise price, 𝑆    , is equal to the 

strike price,   at the expiration time, 𝑇, using the above 

transformed variable, we must have       = 0. 

For computational purposes, the common practice in 
the literature is to truncate the semi-infinite domain [     , 

+∞) to a finite interval Ω = [    ,     ]. While  for  a  large  
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price of the underlying asset, the option value is negligible 
and is taken to be zero. Then, it is reasonable to truncate 
the pricing domain into a bounded domain complemented 
with appropriate boundary conditions. A considerable 
body of research has demonstrated that the upper bound 
of the underlying price 𝑆    is three or four times of the 

strike price, it is reasonable to set      = 𝑙𝑛  . On the 

other hand, since            for x ≤      , there is no 

need to show what exactly xmin is. However, for 
symmetric purposes, some published works set [    , 

    ]. This is, however, not the case for the iFEM where 

     is set to zero because we only focus on the positive 
region. The reasons for this choice are explained further 
in the subsequent section. What follow is the 
implementation of the two approaches using the set up in 
Equation 2. 
 
 
Formulation of the numerical techniques 
 
Here, presents the dFEM and iFEM implementation of 
the solution of the nonlinear system of Equation 2. The 
underlying idea behind the dFEM is similar to that of 
conventional finite element method. However, for ease of 
reference, it is briefly outlined. On the other hand, the 
iFEM is relatively new development and can have 
applications elsewhere. This method would be extended 
to other pricing formulations and models in the 
subsequent papers. 
 
 
The direct finite element approach (dFEM)  
 
Following the standard Galerkin weighted residue 
formulation (Rao, 2017), a residual equation is 
constructed by adopting      as the weighting function. 
The weighted residual or equilibrium statement for the 
governing differential equation in 2 reads 
 

          (3) 
 

where   [    ,     ]. 
In order to reduce the regularity condition on the option 

price, u, we integrate Equation 3 by parts via divergence 
theorem, to obtain 
 

          (4) 
 

Next, we define the solution u in terms of the basis 
function    and time-dependent coefficient   (τ). Similarly, 
the weighting function   is written in terms of    and an 

arbitrary constant   : 
 

         (5) 
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where    are some unknown time-dependent coefficients 
to be determined.  

Subsequently, we derive the system of nonlinear 
ordinary differential equation which yields the semi-
discrete solution u. With approximation (5), Equation 4 
reads: 

 

𝑅  
  

  
   w(τ)B + F = 0,                                               (6)  

 
where   

 

and      

 
 
with the solution vector 

 
To complete the discretization of (6) as a fully 

discretized version of (4), we approximate the time 
derivative appearing in (6) with a standard finite 
difference scheme. The time interval is decomposed into 

equidistant points with 

time step . The finite difference 

approximation for the 
  

  
 at time τ is 
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By using Equation 7, Equation 6 yields the familiar θ-
scheme for           
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to the Crank-Nicolson scheme. Here, we select the latter 

due to its consistency and convergence error rate 𝑂     . 
Finally, with           , 𝑄     ̅   −     and after 

specifying the appropriate time-dependent boundary 
underlying boundary conditions, we obtain a non-singular 
system of algebraic equations: 
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solved forward in time, that is, the terms indexed by 𝑛 are 

known, while the terms with index 𝑛     are to be 
determined. For numerical computation, we evaluate the 
element matrices using a linear basis function and 
assemble all the element matrices to obtain K and Q. 

Next, we solve for the unknown   as the zeros of 
Equation 9 using the popular PSOR algorithm. Solving 
problems of Equation 9 is still a difficult task, because the 
terms K and Q are both functions of the unknown 
boundary after imposing the constrained boundary 
conditions making the system nonlinear. The coupling of 
the two types of unknowns (the optimal exercise price 
and the option values) makes Equation 9 much more 
computational challenging. 
 
 

Inverse finite element approach (iFEM) 
 

As mentioned earlier, the iFEM was used by Alexandrou 
(1989) in solving nonlinear problems associated with 
phase change in mechanics. However, in quantitative 
finance, to the best of our knowledge, the current 
literatures are a paper by Zhu and Chen (2013) and 
recently by Adegboyegun (2018). Based on an algorithm 
proposed Alexandrou (1989) and Zhu and Chen (2013) 
detailed a numerical scheme for locating the optimal 
exercise boundary for American put options with no 
dividend yield. The approach involves the use of 
simulated finite elements to inversely predict desired 
quantities that are spatially varying with time. Any 
assumptions included in the finite element model and in 
the whole simulation of the experiment determine the 
quality of the inverse solution (Chemisky et al., 2015). In 
quantitative finance, iFEM is employed by craving the 
boundaries of the finite elements to remain on “isotherms” 
of the asset price, whereas, the option value is specified 
a priori everywhere in the domain. Thus, the option is 
constant along the boundaries of unknown locations, 
which are permitted to change as the adopted 
optimization algorithm (Newton iteration method) 
proceeds. In this way, the Neumann boundary condition 
in the PDE system (2) is satisfied. 

Furthermore, since          we must have     𝑒  −

          when   is in the range           . 

Consequently, the initial condition in Equation 9 can be 
simplified as          𝑒  −   . To realistically implement 
the approach, the range of option price, P must be known 
a priori. However, in Equation 1, it is not difficult to show 

that P would fall within      − 𝑆     , which varies with 

respect to time. However, the difficulty is overcome in 
Equation 2. After introducing the dimensionless variable, 
the transformed option price,   falls within    𝑒  −    , in 
which the unknown boundary is removed.  

To ensure a reasonably accurate solution, we show 
that u is a strictly monotonically increasing function with 

respect to   for             . As previously shown by 

Zhu and  Chen  (2013),  this  is  done by  evaluating  
  

  
  

 
 
 
 

(
  

  
  )

 

 
. Here, 

  

  
 is greater than zero because the 

delta of an American put option is more than −1 for 
𝑆    𝑆      . Thus,   is strictly monotonically increasing 

with respect to   for             .  

Next, we proceed to the detail implementation of iFEM. 
The first step is to deal with the time derivative appearing 
in the governing partial differential equation. In contrast to 

the conventional FEM, where 
  

  
 is approximated by 

difference scheme, here, it is decomposed into the hedge 

parameter, delta, that is,  
  

  
 and the velocity of the mesh, 

  

  
 . Now, according to the concept of the iFEM, the option 

price,   is obtained at selected underlying price which 
varies with respect to time, and therefore, we obtain 
 

                                                 (10) 
 

where 
  

  
 is a total derivative, that is, the rate of change of 

the option price at a node. Recall that the option price is 
distributed and kept constant at the computational nodes. 

Hence, 
  

  
   Moreover, it is obvious that in this case the 

mesh is not fixed but moves with velocity        
  

  
 . 

Therefore, 
 

                                                   (11) 
 
Using Equation 2 and following the conventional finite 
element formulation, residual equation can be 
constructed for the governing PDE in Equation 2 as: 
 

  (12)    
 
With the velocity of the mesh being approximated by the 
first order finite difference 

      ≈ 𝑃   
        

  
, and by integrating by parts, 

Equation 12 reduces to: 
 

  (13)    
 

where xmax is the location of the last node (the limit of the 
yielded domain). This limit (which is indeed a key 
parameter) is obtained as a function of time automatically 
with the solution. The iFEM is implemented by 
considering that the option price in the yielded part varies 
from       at the rotating surface       (that is, location 

of the free boundary at expiry) to    𝑒    −    at 
        . 
At this stage, three advantages of iFEM are obvious:  
 

(1) The  solution is limited to the yielded part of the option,  
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the singularity is automatically removed, and hence the 
solution corresponds to the ideal constitutive model 
without any regularization.  
(2) The boundary conditions are applied and satisfied 
exactly.  
 (3) There is a reduction of the total number of unknowns 
due to a priori known option values of designated 
underlying asset.  
 
 
Remarks  
 
Vmesh is approximated by 𝑃 , and thus, the original 

equilibrium statement 𝑅    in Equation 12 is replaced by 

�̅�    in Equation 13. This is because of the truncation 
error brought in by the numerical approximation of Vmesh 
by first order finite difference. The error can be reduced 
by adopting higher-order approximation method. For 
simplicity, we have adopted the first order approximation 
in the current work while the implementation with higher 
order approximation should be similar. The remaining 
part of the iFEM formulation involves the selection of 
suitable shape functions, the computation of the element 
matrices and assembling of the finite element 
contributions all follow the dFEM procedures. Finally, 
after specifying the appropriate time-dependent 
underlying boundary conditions, we obtain a non-singular 
system of algebraic equations of the form: 
 

                                         (14) 
 

where W* are the nodal values of the entire domain, K* 
and Q* are respectively, the constrained master stiffness 
matrix and the constrained master column matrix and 
they are given by: 
 

 
 
The resulting non-linear system of Equation 14 is solved 
using a Newton-Raphson scheme with its quadratic 
convergence characteristic. We remark that the structure 
of the nonlinear Equation 14 is different from that of 
dFEM Equation 9. While W in Equation 9 are unknown 
nodal values, W* in Equation 14 are kept as known 
constant values along the nodes of unknown location. 
The Equation 14 formulation results to the elimination of 
the requirement to specify the spacing of the „‟isotherms” 
of the underlying along the moving boundary, which is 
replaced by the specification of the option value. For a 
reasonably accurate solution, the monotonicity of W* is 
required. Otherwise, the coordinate x that satisfies 
Equation 14 is not unique. This will lead to difficulties in 
deciding the correct location for a fixed nodal value, even 
if the convergence of the adopted iteration method is 
guaranteed. Fortunately, in our case, W* are strictly 
monotonically   increasing    with     respect     to    x,    as  
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demonstrated earlier. Therefore, no such problem needs 
to be further considered. 

For numerical computation, the Jacobian of the 
Newton-Raphson procedure is saved using an element-
by-element storage and solved by an iterative method 
based on a modification of the biconjugate gradient 
stabilized method. The Jacobi preconditioning was used 
to speed up convergence and the derivatives of the 

residual equations �̅�    are obtained with respect to the 
unknown nodal locations x. For converged results, 
usually two to three iterations in the Newton-Raphson 
procedure are necessary at each time step and the 
solution advances to the next time step when all 
unknowns converge to the stopping criterion set to a 
relative error of 10

−7
. An algorithm that guarantees the 

convergence of iFEM is proposed by Zhu and Chen 
(2013) and is summarized as follows: 
 
(i) At the zeroth time step, the nodal location    is 

initialized as       𝑎     𝑎    , where 𝑎       , 
𝑎        , and 𝑎    < 𝑎  𝑎               , with N 
being the number of elements in the whole computational 
domain. 
(ii) The Newton iteration scheme is then adopted to find 
the exact nodal location of the kth  𝑘      time step, that 
is,    

 . The initial guess of the solution is set as the final 

solution of the (k − 1) th time step, that is,    
 =    

  
The specific implementation of the Newton iteration for 
this time step is a follow:  
(iii) Suppose that   

  is obtained after nth iteration 

 𝑛     , we compute the residual �̅�   
   through (14), 

and the corresponding Jacobian matrix   ̅   
   

(iv) Calculate the unknown nodal locations at the 
 𝑛       iteration step through 

   
      

 -  ̅   
   

  . 

(v) Repeat steps 1 and 2 until ‖   
   −   

 ‖    is 

satisfied. Set the solution of the 𝑘   time step to   
  

    
   , which completes the Newton iteration for the 𝑘   

time step. 
 
In the above algorithm, the location of the fixed boundary 
is excluded, since it is already the solution of the 
corresponding nodal value, and no iteration is further 
needed. If the location of the fixed boundary were still 
taken into consideration, the residual associated with this 
point would be zero, resulting in the corresponding row of 
the Jacobian matrix being zero. Consequently, the 
Jacobian matrix would be highly singular, and the Newton 
iteration fails. The convergence of the above scheme was 
discussed recently by Zhu and Chen (2013) and several 
other literatures, hence, the aspect is left out in this work.  
 
 
Numerical experiments 
 

Here, we report the results of numerical experiments and 
some detailed comparisons are made between the dFEM  

   �̅�  =       − 𝑄  ,                                                                                        

                     𝑖 ,𝑗 =    ′𝑖( ) ′𝑗 ( ) + (1 − 𝛾 − 𝑃 ) ′𝑖( ) 𝑗 ( ) + 𝛾 𝑖( ) 𝑗 ( ) 
𝛺

𝑑 , and      

           𝑄  𝑖 ,𝑗 =  𝛾 𝑗 ( )
𝛺

𝑑 . 
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Table 1. The variation of RMSRE when the grid sizes are gradually increased. M: the number of time intervals; N: the number of 
elements. 
 

 
M=10 M=20 M=40 M=80 

dFEM iFEM dFEM iFEM dFEM iFEM dFEM iFEM 

 N=5 0.1045 0.0775 0.0741 0.0529 0.0486 0.0369 0.0306 0.0266 

 N=10 0.0917 0.0725 0.0592 0.0477 0.0402 0.0310 0.0287 0.0201 

 N=25 0.0872 0.0688 0.0574 0.0440 0.0358 0.0266 0.0214 0.0153 

 N=50 0.0748 0.0688 0.0531 0.0427 0.0322 0.0251 0.0193 0.0137 

 
 
 
and iFEM for pricing American options. To provide a fair 
and meaningful comparison, linear basis function is used 
for each of the discretization. Evaluation of the results is 
conducted with Zhu (2006) analytical solution as a 
benchmark. Using this equivalent set up, the goal is to 
compare the two methods in terms of computational 
performance. In order to facilitate objective comparison, 
we conduct the experiments on the examples presented 
by Zhu (2006) and Zhu and Chen (2013). The 
parameters used are: the strike price        , the risk-

free interest rate        , the volatility of the underlying 
asset σ       and the tenor of the contract being 𝑇     
year.  

To compare the results of the two approaches, we 
focus mainly on the comparisons based on the optimal 
exercise prices, 𝑆     instead of the option value, P since 

𝑆     is more difficult to be accurately calculated than the 

option price. Once 𝑆     is accurately determined, the 

pricing problem becomes a fixed boundary problem and 
the calculation of the option price is straightforward. 
 
 
Comparison in terms of accuracy  
 
For us to compare the solution accuracy of dFEM and 
iFEM with respect to various levels of discretization and 
the number of time intervals, we use the RMSRE (root 
mean square relative error), which is defined as: 
 

 
 

where �̅� ′  are the nodal values of 𝑆  associated with 

dFEM and iFEM, 𝑎 ′  are the 𝑆 obtained from the Zhu‟s 

analytical result and I is the number of sample points 
used in the RMSRE. With the RMSRE, comparison of the 
overall difference of the computed numerical results and 
the exact solution based on Zhu‟s analytical result can be 
clearly demonstrated. In our numerical experiments, I 
was set to be 50 in all the results presented. In order to 
have a good comparison of the error associated with 
each  method,  the  RMSRE when the number of steps in 

both spatial and temporal directions are gradually 
increased are tabulated respectively in Table 1. From this 
table, one can clearly see that the dFEM produces 
consistently larger error than the iFEM when equal size 
element and number of time interval are used. The 
results suggest that iFEM yields a more accurate result 
than dFEM. This clear difference may relate to the 
different convergence schedules; the adopted PSOR 
scheme in dFEM has slow convergence, whereas, the full 
Newton iterative scheme adopted in iFEM has a 
quadratic convergence rate. Moreover, a careful 
observation of the table shows that the differences 
between the RMSRE of the two methods on a coarse grid 
resolution, say N = 5 and M = 10 is quite substantial, but 
the difference is not well pronounced on a relatively fine 
resolution of N = 50 and M = 80. A reason adduced to 
this observation is that fine grid resolution produces 
better results, and hence, less difference in RMSRE. One 
should also notice from Table 1 that when the time 
interval parameter M, reduces (corresponding to an 
increase in the size of the time step), the RMSREs for 
both methods become larger.  

Another important observation is that a reduced time 
interval worsened the convergence conditions of the 
adopted PSOR and Newton iterative schemes for both 
dFEM and iFEM, respectively. This is as a result of large 
discretization errors when dealing with the time derivative, 
  

  
, and the velocity of the mesh, Vmesh associated with 

the dFEM and iFEM schemes, respectively. A reduced 
number of elements also produces large RMSREs for the 
two methods. The error in this case, however, relates to 
the finite element discretization acting on the residual 
equation. Note that in all the computations, linear basis 
function is used. Numerical solutions based on quadratic 
shape function would have a smaller RMSREs than those 
computed on linear function. 

 Having compared the dFEM and iFEM based on the 
variation of RMSRE when the grid sizes are gradually 
increased, it is also important to compare the accuracy of 
both approaches based on a fine resolution of a grid size. 
Such a comparison is presented in Figure 1 with a grid 
resolution of 𝑁       and 𝑀      . As shown in Figure 
1, it can be easily seen that although both numerical 
results show a good convergence to the Zhu‟s analytical 
results, the results based on iFEM better approximate the  
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Figure 1. Comparison of Sf for dFEM and iFEM. 

 
 
 
benchmark solution. A close examination of Figure 1 
reveals that the iFEM almost coincide with the 
benchmark solution at the expiration date,     𝑇       
(year), the optimal exercise price calculated by Zhu‟s 
analytical method is 𝑆  𝑇 = 76.113, whereas, they are 

𝑆  𝑇  = 76.245 and 𝑆  𝑇 = 76.804. Furthermore, Figure 1 

also reveals that the dFEM underestimate the free 
boundary values when the time close to expiry. This is 
due to the presence of singularity at expiry, which is not 
possible for most of the numerical algorithms to deal with. 
However, in the case of iFEM, the algorithm is designed 
such that the location of the optimal exercise price at 
expiry is known a priori and is already included in the 
algorithm. 
 
 

Comparison in terms of efficiency  
 
There have been two thrusts in the development of 
algorithms as far as real-world tasks are concerned. One 
has emphasized higher accuracy; the other faster 
implementation (Uijlings et al., 2015). These two thrusts, 
however, have been independently pursued, without 
addressing the accuracy versus efficiency trade-offs. The 
importance of accuracy of an algorithm diminishes when 
response time is slow for a given task. The converse is 
also true; importance of a fast algorithm diminishes if the 
accuracy and precision are insufficient for subsequent 
financial interpretations. Comparing the dFEM and iFEM 
in terms of computational performance is not an easy 
task.  Although  the  accuracy-efficiency  characteristic  is 

algorithm-dependent, an understanding of a general 
pattern is crucial in evaluating algorithm performance as 
far as real-world tasks are concerned.  

As expected, in our numerical experiments, the 
computing time for both methods increases with increase 
in the grid size. However, the dFEM incur less 
computational cost than the iFEM under the same grid 
resolutions. In fact, for the grid resolution M = N = 100, 
the computational cost for the dFEM is just 48 s, whereas, 
it takes iFEM more than 120 seconds for the same grid 
resolution. But again, this nice feature does not make the 
dFEM more efficient than iFEM, because efficiency of an 
algorithm does not depend only on the speed of 
calculation, but also on the accuracy. The task of 
establishing a “trade-off” between accuracy and efficiency 
shall be our goal subsequently.  
 
 
Accuracy versus efficiency  
 
In our discussions pertaining to accuracy and speed, all 
the illustrative results are based on linear basis function. 
A 2-D curve characterizing the accuracy-efficiency (AE) 
trade-off is used to evaluate the performance of the 
methods. On the curve, accuracy (abscissae) is measured 
by the RMSRE, (calculated using the Zhu (2006) 
analytical result as the base value), and computational 
efficiency (ordinate) is measured by the total CPU time 
consumed at each run. These curves are generated by 
setting parameter of the algorithms in the temporal 
direction to a fixed value, M = 25, while varying resolution  
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Figure 2. Accuracy versus efficiency. 

 
 
 
in the spatial direction. Note that similar curve is obtained 
when grid resolution in spatial direction is fixed and the 
resolution in temporal direction is varied.  

In the AE family of performance curves depicted in 
Figure 2, six different resolutions were used in the 
computation. Each curve corresponds to the iFEM and 
dFEM algorithm, respectively. A point on the performance 
curve denotes a certain parameter setting (grid 
resolution). As clearly shown, the accuracy is inversely 
varying with the speed of calculation for the two methods 
(curves); an expected result. A higher accuracy usually 
implies a lower run time and verse-versa for any 
resolution. It can also be easily observed that the dFEM 
curve shows a greater speed of calculation but with larger 
error, whereas iFEM has significantly reduced error with 
higher computing time under equivalent grid resolution as 
the dFEM. Following the explanation Cuadrado et al. 
(2001), the distance from the origin to AE curve 
represents the overall performance (efficiency) of the 
algorithm. Performance point close to the origin (small 
error and low execution time) is indicative of better 
algorithm operating point. In terms of AE performance, 
iFEM appears more flexible and effective, because the 
curve is closer to the origin in about five out of the six 
resolutions (from the 2nd−6th). A close examination of 
the curves shows that at any point between the 3rd to 6th 
resolution, iFEM curve is closer to the origin than dFEM 
curve. A nice feature of the iFEM as indicated in AE 
curve is that using any point on the curve between the 
3rd and 4th resolutions, which appear to be the closest 
region   on   the   iFEM   curve   to   the    origin,    a   high 

computational performance (efficiency) in terms of a 
satisfactory computing time and accuracy is achieved.  

The AE curve is also useful in determining the 
computational cost when the same order of accuracy is 
maintained. For example, let us consider RMSRE = 2.5% 
on the curves where errors for the two methods exist. It is 
not difficult to see that the iFEM cost along the CPU time 
axis is lower than its dFEM counterpart, reaffirming the 
fact that when the same accuracy was to be maintained, 
the dFEM requires a very fine grid resolution, which lead 
to higher computational cost, and thus, iFEM could be the 
better option. 
 
 
Conclusion 
 
In this work, we have compared the direct and inverse 
finite element methods for pricing American put options. 
Based on the results of our numerical experiments, the 
dFEM, while appealing in terms of CPU time savings, 
produces larger error than its inverse counterpart for 
similar grid resolutions. Furthermore, by using the 
performance accuracy-efficiency curves to establish the 
trade-offs, the iFEM is indeed more flexible and efficient, 
as a higher performance in terms of a satisfactory 
computing time and accuracy is achieved. The results 
presented in this work demonstrate that the iFEM 
deserves consideration as an alternative numerical 
technique for pricing American-style options. In the 
subsequent works, we will exploit other advantageous 
features   of   the    inverse  finite  element  method  while  



 
 
 
 
considering option pricing problems under different 
formulations and frameworks. 
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