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ABSTRACT 
 

Wavelet based Multifractal analysis techniques provides a sophisticated statistical characterization 
of many complex dynamical phenomena related with Sun and its environment. In this work 
multifractal property of the Sunspot number time series, has been analyzed during Solar cycle 23 
and ascending phase of Solar cycle 24 using Wavelet transform and wavelet based multifractal 
approach. Present analysis has been performed using the software FRACLAB, developed at INRIA 
and available online at http://www-rocq.inria.fr. It was found that the singularities spectrum for 
sunspot time series was well Gaussian in shape suggesting the multifractal characteristics of time 
series. Thus we conclude that the multifractal based approach provide the local and adaptive 
description of dynamical processes related with Sun and its climate and can be applied effectively 
in the study of solar activity. 
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1. INTRODUCTION  
 

The significant feature of the Sun’s outer regions 
is the existence of a reasonably strong magnetic 
field which governs all solar activities inside the 
Sun and its atmosphere. According to the lowest 
order of approximation, the magnetic field of the 
Sun is dipolar and axisymmetric in nature. In 
some localized regions known as sunspot the 
value of magnetic field are much higher [1]. 
Sunspots are generally seen in pairs or in groups 
of pairs at both sides of the solar equator. 
According to Petrovaye [2] as the sunspot cycle 
progresses, spots appear closer to sun’s equator 
giving rise to the so called “butterfly diagram” in 
the time latitude distribution. The twisted 
magnetic fields above sunspots are sites where 
solar flares are observed. Bray [1] has been 
found that chromospheric flares show a very 
close statistical relationship with sunspots. The 
number of sunspots continuously changing in 
time in a random fashion and constitutes a 
typically random time series [3]. The newly 
corrected sunspot time series [4-7] progressively 
indicates the declination in solar activity before 
the commencement of the Maunder Minimum, 
while the slow rising drifts in activity after the 
Maunder Minimum. It shows that by the mid 18th 
century, solar activity returned to levels 
corresponding to those observed in current solar 
cycles. Also Gkana and Zachilas [8] analyze 
Sunspot number version 2.0 data and claim that 
prolonged solar activity minimum is probable 
occur, lasting up to the year ≈ 2100. 
 

Analysis of sunspot could lead significant 
improvement in the measurement of solar activity 
[9]. Recently sunspots and related activities have 
been analyzed by various methods, including 
correlation analysis [10], Chaos analysis [11,12] 
and multifractal analysis [13-15]. Schatten [16] 
used SODA index (Solar Dynamo Amplitude) for 
understanding of the Sun's dynamo processes to 
explain the connection between how the Sun's 
fields are generated and how the Sun broadcasts 
its future activity levels to Earth. Zachilas and 
Gkana [17] analyze the yearly data of mean 
sunspot-number during the period of 1700 to 
2012 and concluded that the yearly sunspot 
number is a low-dimensional deterministic 
chaotic system. Tarbell et al. [18] used the fractal 
analysis technique in the context of solar 
magnetic field to find a fractal dimension. Many 
authors [18-20] used fractal analysis technique to 
study the photospheric magnetic structure 

[18,20]. Tao et al. [21] applied numerical simulate 
distribution for the multifractal analysis of surface 
magnetic field. Later, numerical simulations of 
multifractality and intermittency of the solar 
structure were performed by so many 
researchers [22-26]. Multifractal theory provides 
an elegant statistical characterization of many 
complex dynamical variations in nature and 
engineering [27,28]. It is conceivable that it may 
enrich characterization of the sun’s magnetic 
activity and its dynamical modeling [29-30]. The 
relative fraction of small scale fluctuation in the 
magnetic field contributes significantly and reach 
a critical state of intermittency more prior to 
flaring [26]. It was found that active regions reach 
a critical state of intermittency prior to flaring [26]. 
The multifractal scaling behaviors reported by 
Movahed [31] are valid for timescales up to more 
than 50 years. McAteer [32] found analytical 
connection between multifractal formalism and 
the set of 3D equations that govern the small-
scale and large-scale magnetic structure on the 
Sun [33,34]. Recently, Georgoulis [35] and 
McAteer [32] achieved a contrary conclusion that 
studies of multifractals do not provide a 
predictive ability for the onset of solar flares. In 
this paper we have used the multifractal 
techniques and noticed the presence of 
multifractality in sunspot number time series 
during the Solar Cycle 23 and ascending phase 
of Solar Cycle 24.  
 
2. DATA SET  
 
In this analysis we used the monthly counts of 
sunspot number for the multifractal analysis for 
the time span of 1996 to 2016. This period 
includes complete Solar Cycles of 23 and 
ascending and maximum phase of current Solar 
Cycle 24. The dataset available online and 
downloaded from 
http://www.sidc.be/silso/datafiles. The Sunspot 
Index and Long Term Solar Observatory (SILSO) 
is the World Data Center for the production, 
preservation and dissemination of the 
international sunspot number. 

 
3. THEORETICAL BACKGROUND 
 
3.1 Wavelet Transforms  
 
Wavelet transform is an ideal technique for the 
analysis of real world signals that contain sharp 
changes and localized discontinuities [36]. The 
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wavelet transform use different window sizes, 
which are able to compress and stretch wavelets 
in different scales or widths; these are then used 
to decompose a time series [37] and decompose 
a one-dimensional signal into two-dimensional 
time–frequency domains at the same time [38]. 
Wavelet transform can be performed using two 
approaches: Continuous Wavelet Transform 
(CWT) and Discrete Wavelet Transform (DWT). 
The CWT introduces a very redundant and finely 
detailed description of time series in terms of 
both time and frequency. It is particularly helpful 
in resolving problems involving signal detection 
and identification of hidden transients such as 
hard to detect, short – lived elements of a time 
series. The scales and locations used in DWT 
are normally based on a dyadic arrangement (i.e. 
integer powers of two) [39]. DWT is especially 
useful for time series containing sharp jumps or 
shifts [40].  
 

3.2 Time Series Decomposition via the 
Discrete Wavelet Transform (DWT) 

 
The DWT is usually based on the dyadic 
calculation of position and scale of a signal [39]. 
The DWT is excellent for denoising the signals 
[41]. The DWT of a vector is the outcome of a 
linear transformation resulting in a new vector 
that has equal dimensions to those of the initial 
vector [42]. The discretization of wavelet 
functions is accomplished using a logarithmic 
uniform spacing that has a coarser resolution at 
higher scales [43,44]. In this study all the time 
series (for the Solar Cycles 23 and ascending 
phase of current Cycle 24) were decomposed 
using the Duabechies (db2) and Coifman (coif5) 
wavelets. Daubechies and Coifman (coif5) 
wavelets provide compact support, which 
indicate that the wavelets have non-zero basis 
functions over a finite interval, as well as full 
scale and translational orthonormality properties 
[45,46]. These features are very important for 
localizing events in the time-dependent signals 
[46].  
 

3.3 Wavelet Based Multifractal Formalism 
 
The wavelet transform not only locates isolated 
anomalous events, but can also characterize 
more complex multifractal sunspot data having 
non isolated singularities. Multifractal objects 
cannot be completely described using a single 
fractal dimension (mono fractals). They have an 
infinite number of dimension measures 

associated with them. The wavelet transform 
takes advantage of multifractal self-similarities, in 
order to compute the distribution of their 
singularities. This singularity spectrum is used to 
analyze multifractal properties. The concepts of 
fractals and multifractals and their relevance to 
the real world data were introduced by 
Mandelbrot [47]. The time series of sunspot 
numbers usually depict fractal or multifractal 
features. Time series are commonly called self- 
affine functions as their graphs are self-affine 
sets that are similar to themselves when 
transformed by anisotropic dilations.  
 
Mathematically, if �(�) is a self- affine function 
representing the sunspot number then  
 
For �� ∈ �, ∃ � ∈ � such that for any � > 0, 

 

�(�� +  ��) −  �(��)  ≅  ����(�� + �) − �(��)�   

(1) 
 
Here exponent H is known as roughness or Hurst 
exponent. Note that if H < 1, then � is not 
differentiable and smaller the exponent H, the 
more singular is �. 
 
For sunspot number �(�), a function ℎ(�), the 
Holder function of  �, which measures the 
regularity of � at which point � is associated. 
 
The point wise Holder h of � at point �� is defined 
as: 
 

 
 

(Here h is an integer and �  is non- differential). 
 
One may also define local exponent ℎ�(��)  as: 
 

                                                         
 

Where  and ℎ� are different in general. For 
example for 
  

�(�) =  |�|����
�

|�|�  , ℎ (0) = 0, � ℎ��� ℎ�(0) =  
�

�� �
                        

(4) 
 

They have quite different properties. For instance 
ℎ� is stable through differentiation (ℎ�(�,, ��) =
ℎ�(�, ��) − 1), whereas h is not. The smaller ℎ(�) 
is, the more irregular the function � is at �. 
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3.4 Partition Function 
 
Calculation of Pointwise Lipschitz (Holder) 
regularity of multifractal is not possible because 
its singularities are not isolated and the finite 
numerical resolution sufficient to discriminate 
them. To overcome this difficulty Muzy [48] have 
introduced the concept of wavelet transform 
modulus maxima using a global partition function 
[49]. Let Ψ  be a wavelet with n vanishing 
moments. Mallat [43] has shown that if � has a 
pointwise Holder (Lipschitz) regularity �� ≤ � at � 
then the wavelet transform ���(�, �) has a 
sequence of modulus maxima that converges 
towards � at fine scales. The set of maxima at 
the scale � can thus be interpreted as a covering 
of the singular support of � with wavelets of 
scale �. At these maxima locations 
 

|���(�, �)| ≈ ���� � �⁄                                    (5) 
 

Let ���(�)�
�∈�

be the position of all local maxima 

of |���(�, �)| ≈  ���� � �⁄  at a fixed scale �. The 
partition function Z measures the sum at a power 
q of all these wavelet modulus maxima: 
 

�(�, �) =  ∑ ����(�, ��)�
�

�                              (6) 

 
For each � ∈ �, the scaling exponent �(�) 
measures the asymptotic decay of �(�, �) at fine 
scale �: 
 

�(�) = lim inf
��� �(�,�)

����
                                  (7) 

 
This typically means that �(�, �)~��(�). 
 

4. RESULTS AND ANALYSIS 
 
In this study we have analyzed the multifractal 
characteristics of sunspot number during the 
Solar Cycle 23 and current Cycle 24 using 
wavelet based multifractal techniques. Sunspot 
numbers (SNs) are widely and frequently used in 
astronomy to reflect long term variations of solar 
activity, which has served as the primary time 
series to define solar activity [50-53]. 
 

4.1 Wavelet Analysis of Sunspot 
Numbers 

 
In this section DWT of the sunspot numbers for 
Solar Cycle 23 and 24 were carried out in terms 
of approximations and details coefficients using 
Daubechies and Coifmann mother wavelets. 
These wavelets have fractal structure and 
include both highly localized wavelets and                
highly smooth wavelets [54]. The sunspot time 
series (s) is decomposed into two orthonormal 
components, frequency (details) and 
approximations component. The approximations 
represent the long term of data which is almost 
identified to original time series and the detail 
coefficients represent the short period 
fluctuations in given period range. The result of 
analysis was shown in Figs. 1 – 4. In figures, the 
X-axis represents the time period of the sunspot 
time series. In all figures first panel represents 
the variation in sunspot number time series. The 
second panel gives the approximation coefficient 
“��” of all the figures. It separates the short term 
anomalous variation from the long term 
variations.  

 
 

Fig. 1. DWT decompositions of Solar Cycle 23 using Daubechies 2 wavelet. Anomalous 
variations found between 45-60 no. of samples (i.e. at the maximum phase of cycle) 
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Fig. 2. DWT decompositions of Solar Cycle 23 using Coifman 5 wavelet. Anomalous sharp 
variations found between 40-60 no. of samples (i.e. at the maximum phase of cycle) 

 

 
 

Fig. 3. DWT decompositions of Solar Cycle 24 using Daubechies 2 wavelet. Anomalous 
variations showing between 40 to 50 no. of samples (i.e. at the maximum phase of cycle) 

 

 
 

Fig. 4. DWT decompositions of Solar Cycle 24 using Coifman 5 wavelet. Anomalous sharp 
variations found between 40 to 50 no. of samples (i.e. at the maximum phase of cycle) 
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On the other hand, other four parts  ��,��, �� and 
�� represent detail coefficients of the sunspot 
time series. The detail coefficients reveal that the 
field strength changes between positive and 
negative values. This indicates the existence of a 
strong and variable magnetic field on the Sun as 
sunspots. The detail coefficients of sunspot 
numbers show that high frequency components 
during the initial and main phase of the solar 
cycle and their time evolution. It was noticed that 
very high frequency components present only 
during the main phase of the respective solar 
cycles and they are very strong in amplitude and 
stable for higher level of decomposition. Even 
though there are some strong fluctuations in the 
main phase and recovery phase but they are not 
as persistent as that present during the initial 
phase and main phase of the cycles.    
 

4.2 Multifractal Analysis of Sunspot 
Numbers 

 
In this section, we have done multifractal 
analysis of sunspot numbers time series [26,27]. 
 

The Legendre spectrum was calculated by 
FRACLAB software, developed at INRIA and 
available online at http://www-rocq.inria.fr. Since 

the sunspot data have some missing values we 
take the longest segments of sunspot data 
without any missing values. The order of the 
magnitude of the length of each segment is 
about 120, thus permitting to obtain reliable 
estimates of the singularity spectrum and 
multifractal parameters. Figs. 5 and 7 (Right 
panel) shows the Legendre spectra for the 
selected segments for both solar cycle. All the 
spectra present the typical single-humped shape 
that characterizes multifractal nature of sunspot 
number. The spectra of the segments for each 
sunspot time series, calculated for different time 
intervals are not identical. Nonlinear fluctuations 
are possibly due to the presence of multifractal 
processes. The smaller values of α correspond 
to the burst of events, while higher values of α 
correspond to events occurring sparsely [55]. 
The spectrum gives geometrical information 
pertaining to the dimension of sets of points in a 
signal having a given Holder exponent. This is 
the most precise spectrum from a mathematical 
point of view, but is also difficult one to estimate. 
Large deviation spectrum yields statistical 
information, related to the probability of finding a 
point with a given Holder exponent in the signal. 
More precisely, it measures how this probability 
behaves with the change in resolution. 

 

 
 

Fig. 5. Multifractal analysis of Solar Cycle 23 using CWT (Morlet wavelet of size 8 and 128 
voices, LS regression and local maxima). In figure Left panel show the Legendre spectra and 

Right (upper) panel gives the singularity spectrum and Right (lower) panel for scaling function 
of the considered time series 
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Legendre spectrum is a concave approximation 
to the large deviation spectrum. Its main purpose 
is to yield much more robust estimates, though at 
the expense of a loss of information. It could 
base on box method or CWT techniques. In the 
sequel we show some sample results for the 
spectra computed with the Legendre technique. 
Figs. 6 and 8 show the results of the CWT 
(Morlet wavelet) based estimation of the 
Legendre spectrum which represents an 
approximation of the spectrum for two different 
Solar Cycles. Each figures consist of two parts in 
which the first part on the top of each figure 

represents the signal or raw data. The second 
part of figure shows the analyzed pattern with the 
application of Morlet wavelet of size 8 and 128 
voices of different Solar Cycles. The non-
parametric point wise Holder regularity approach 
based on CWT with Morlet wavelet for the Solar 
Cycle 23 and ascending phase of Cycle 24 was 
shown in Figs. 9 and 10. The Holder exponent is 
used for the study that characterizes the 
regularity of the measure (function) of the 
magnetic field strength of sunspot under 
consideration at either pointwise regularity or 
local regularity.  

 

 

 
Fig. 6. CWT of Solar Cycle 23 using a Morlet wavelet of size 8 and 128 voices. In figure X axis 
represents the number of samples and Y axis represents scale. The upper panel shows the 

raw data of the time series and lower panel its continuous wavelet transform (CWT) 
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Fig. 7. Multifractal analysis of Solar Cycle 24 using CWT (Morlet wavelet of size 8 and 128 
voices, LS regression and local maxima). In figure Left panel show the Legendre spectra and 

Right (upper) panel gives the singularity spectrum and Right (lower) panel for scaling function 
of the considered time series 

 

 

 
 
Fig. 8. CWT of Solar Cycle 24 using a Morlet Wavelet of size 8 and 128 voices. In figure X axis 
represents the number of samples and Y axis represents scale. The upper panel shows the 

raw data of the time series and lower panel its continuous wavelet transform (CWT) 
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Fig. 9. Non-parametric point wise Holder regularity estimation using CWT with Morlet wavelet 
for the Solar Cycle 23 

 

 
 
Fig. 10. Non-parametric point wise Holder regularity estimation using CWT with Morlet wavelet 

for the Solar Cycle 24 
 

5. CONCLUSION 
 

Wavelet based multifractal analysis is a useful 
way to characterize the multifractality in time 
series. The result of our analysis shows that 
sunspot time series reveal multifractal character 
during Solar Cycle 23 and ascending phase of 
Solar Cycle 24. The DWT (Figs. 1 - 4) of Sunspot 
time series shows the phenomenological 
difference between Solar Cycle 23 and Cycle 24. 
It present Solar Cycle 23 has large range 
fluctuation due to the contribution of highly 
magnitude solar activities whereas during the 
Cycle 24 it is not noticed hence it is a quite Cycle 
except during the maximum phase revels the 
large fluctuations. The wavelet spectrum depicts 
in Figs. 6 and 8 reveals the time at which large 
variations in time series occur, which is more 
important for the investigation of multifractality. 
Various phenomenon related to Sun such as 
solar flares, sunspot, coronal mass ejection 
(CME) etc. Three main multifractal spectra viz. 
the Housedroff, large deviation and Legendre 
spectra (see Figs. 5 and 7) provides information 

as to which singularities occur in sunspot time 
series and which are dominant. Multifractal 
analysis provided both a local and a global 
description of the singularities of a signal. Recent 
studies have shown that non-Gaussian 
fluctuation is responsible for the presence of 
extreme events in space plasmas. Recently, 
using a non-extensive approach Balasis et al. 
[56] suggested emergence of two distinct 
phases: (i) the phase where the intense magnetic 
storms cause a higher degree of magnetic field 
organization, and (ii) the phase which 
characterizes the normal periods with lower 
magnetic field coherence. The phase (i) may be 
associated with the presence of different kinds of 
large scale coherent structures, also pointed out 
by Chang et al. [57]. The wavelet spectrum 
displayed in Figs. 6 and 8 reveals the time at 
which large variations occur which is very 
important in the investigation of multifractality. 
Thus, we conclude that Solar Cycle 23 
commonly shows the multiracial nature around 
the initial maximum and declining phase of cycle 
rather than Solar Cycle 24. It was not effective 
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during the initial phase of cycle. Solar Cycle 24 
has more fractal nature at the maximum phase 
and we wait for more result till complete the 
ongoing cycle.    
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