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Abstract

Considering the factor analysis methods (classical or robust), the data input (data or scaled data),
and the running matrix (covariance or correlation) all together, there are 8 combinations. The
objective of the study is to give a recommendation for classical and robust factor analysis. First,
when the variables have different units, it is common to standardize the variables, and thus it
is common to use the correlation matrix as the running matrix. Second, we need to explain the
factors from the loading matrix. The entries of the loading matrix from the sample covariance
matrix are not limited between 0 and 1, which makes the explanations of the factors hard. Third,
we may not be able to compute the robust covariance matrix, and thus the robust correlation
matrix of the original data, as the stocks data example illustrates. Consequently, we recommend
classical and robust factor analysis using the correlation matrix of the scaled data as the running
matrix for theoretical and computational reasons. The hbk data and the stock611 data illustrate
our recommendation.
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1 Introduction

Outliers exist in virtually every data set in any application domain. In order to avoid the masking
effect, robust estimators are needed. The classical estimators of multivariate location and scatter
are the sample mean X and the sample covariance matrix S. These estimates are optimal if the
data come from a multivariate normal distribution but are extremely sensitive to the presence of
even a few outliers. If outliers are present in the input data they will influence the estimates X
and S and subsequently worsen the performance of the classical factor analysis [1]. Therefore it is
important to consider robust alternatives to these estimators. There are several robust estimators in
the literature: MCD [2, 3, 4, 5], OGK [6], MVE [2], M [7, 8], S [9, 10, 11, 7, 12], and Stahel-Donoho
[13, 14, 15, 16]. Substituting the classical location and scatter estimates by their robust analogues
is the most straightforward method for robustifying many multivariate procedures [17, 18], which
is our choice for robustifying the factor analysis procedure.

The rest of the paper is organized as follows. Section 2 compares the classical and the robust factor
analysis methods and presents some theoretical results. Section 3 illustrates the comparisons of the
two methods with a hbk data example and a stocks data example. Section 4 concludes.

2 Comparison of Classical and Robust Factor Analysis

When compare the classical and robust factor analysis methods, there are two other issues to
consider. That is, whether we should use data or scale(data) as the data input; whether we
should use the covariance matrix or the correlation matrix as the running matrix (usedMatrix)?
Consider the factor analysis methods, the data input, and the running matrix all together, there
are 8 combinations, i.e.,

<1> classical, data, covariance matrix

<2> classical, data, correlation matrix

<3> classical, scale(data), covariance matrix
<4> classical, scale(data), correlation matrix
<5> robust, data, covariance matrix

<6> robust, data, correlation matrix

<7> robust, scale(data), covariance matrix

<8> robust, scale(data), correlation matrix

There are 4 classical and robust factor analysis comparisons, i.e., <1> vs <5>  <2> vs <6>, <3> vs <7>,
and <4> vs <8>. We recommend <4> vs <8>. The reasons are as follows. First, when the variables
have different units, it is common to standardize the variables, the sample covariance matrix of
the standardized variables is the correlation matrix of the original variables. Thus it is common
to use the correlation matrix as the running matrix. Second, we need to explain the factors from
the loading matrix. The entries of the loading matrix from the sample covariance matrix are not
limited between 0 and 1, which makes the explanations of the factors hard. The first two reasons
suggest us to choose <2> vs <6> and <4> vs <8>. However, <2> and <4> (<6> and <8>) have the same
running matrices, eigenvalues, loadings, uniquenesses, scoring coefficients, scaled data matrices, and
score matrices, see Theorem 2.3. That is, <2> vs <6> and <4> vs <8> give us the same comparisons.
We can choose any pair to do the comparison. Third, we may not be able to compute the robust
covariance matrix, and thus the robust correlation matrix of the original data, as the stocks data
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example will illustrate. Consequently, we should choose <4> vs <8>.
The running matrices of the 8 combinations are given in Table 1.

Table 1. The running matrices. Source: Own research

Classical | Robust
data covariance | <1> S¢ <5> S§"
correlation | <2> R° <6> R’
scale(data) | covariance | <3> §° <7> 8"
correlation | <4> R~ | <8> R

To compare the 8 combinations, we summarize some useful results in Tables 2 and 3. There are some
points in Tables 2 and 3 that are proved in the supplement. Some basic definitions such as diag(),
sample mean, sample covariance matrix, scaled matrix, etc. are also put into the supplement.

Table 2. Results of <1>, <2 >, <5>, and <6 >. In the table, A: data matrix; B:
number of used observations; C: sample used; D: kth observation; E: sample mean; F:
sample covariance; G: sample correlation; H: D; I: scaledX; J: kth scaled observation;

K: sample mean of scaledX; L: cov(scaledX). Source: Own research

X, classical <1>, <2> X, robust <5>, <6>
Xy X
X, X},
A X = o X = -
X ()
B M
C X]]-X-:‘_’:--"'-X M
D X-:f.-'l
. M
E X = # > X
r 1 M *:'l T
F S —W‘Z (X —X") (X — X")
=1
G R"
H D* = diag (diag (S%)) D" = diag (diag (S"))
X+ = (X —1(X) ) (D°) T X = (x ~1(X7) ) (D7) F
T T
(x0) (x70)
* T *r
_ | (x) _ | (x)
(X1|j|i:-) : (X:u:)
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L k=1 . _
R x>
n—1 J:]“XT”"J (X'.A'J).
=(D°)"28°(D")"*
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Table 3. Results of <3 >, <4 >, < 7>, and < 8 >. In the table, A: data matrix; B:
number of used observations; C: sample used; D: kth observation; E: sample mean; F:
sample covariance; G: sample correlation; H: D; I: scaledX; J: kth scaled observation;

K: sample mean of scaledX; L: cov(scaledX). Source: Own research.

Y, classical <3>, <4> Y, robust <7>, <g8>
A Y =scale(X) = X" Y =scale (X) = X*
= (x-1 (X"]T) (D°)~ % - (x —1(Xx%) ") (po)T
B n M
C Y-ZJI-'Y:ﬂl-"' -Y-jlll YI'.:-Y-Z'_JZ--"' 'YI.U:
D Yoy = (D)7 (X — X°) = X Yy = (D)% (X -X°) = X
M
e . & Yy =LlLvy
E Y =1Y ¥ =0() =R U
k=1 _{Dc}—:_; ['X?‘_XFJ
-c o T
SC:&E[}HM_Y](Y _Y] oy M ) T
F k=t Lo S =35> Yu YY) (Y -¥)
=L ‘E’lY':L'Y f k=1
G R R
H D'=riiag (cliag (-SC = FE (d) D = diag (diag(-“ )
Y*C—(Y—u}"’ T (D”)_E Yo — (Y_u}"“f) (D")_7

J| v = (D) T (YY) =Y ) Yi,= (D) (YY)
K TP T4 Vi -00
5 oR 5T-R -
SR (V) (Vi) | e (v YT (Vi Y
. = ﬁ‘klz:llyrfl ( *:-}-Ir - ﬁélym (Y*J‘:'}
_ (J—Jr-}—ﬁ E_"c (b(_‘)_‘f _ (Dr)—'z ,‘-_-_-;'T (Dr-)"z (h)

To prove Theorem 2.2, we need the following lemma.
Lemma 2.1. Let

A1 1251

A2 M2
A= . , Ao = . , A= (aij)

PXp

Ap Hp
Then

diag (A1 AA2) = diag (A1) - diag (A) - diag (A2),
diag (A1A2) = diag (A1) - diag (A2) .

The proof of the lemma is easy and is put into the supplement.



Zhang et al.; BIMCS, 21(2), 1-15, 2017; Article no.BJMCS.31936

For the running matrices in Table 1, we have

C

=5= (2.1)
The proof can be found in Section 1.5.1 of [19]. Furthermore, we have the following theorem.

Theorem 2.2. R =R'.

Proof. We have
R =5"= ZXUc) X))

R =5 = ZY(k) (Yin)'

To prove that R" = RT, it suffices to prove that
X =Y. (2.2)
Write
Xih=(D) " (X - X7),
Yih = (D7)

Yy = (D)% (X — X°),

N\»—A

(Yo -Y"),

from Table 3 (f), we have

Thus

(6") (0t = D),

which reduces to prove
T

D'D°=D",
that is,
diag (diag (s)) - diag (diag (S°)) = diag (diag (S")),
which is equivalent to

diag (S’T) - diag (S°) = diag (S").

We have just proved
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and thus

Consequently,

ding (8") = diag (D) * 87 (D) %)
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Finally,
( 1) diag (S") - diag (S°)
= diag (( 1) diag (S") - diag (D)
( ) diag (D°) - diag (S")
E) - diag (S") (Lemma 2.1)

The proof is complete. O

The score of the kth observation is summarized in Table 4. The scores method can be “regression”
or “Bartlett”. The running matrix can be the covariance matrix (S) or the correlation matrix (R).
See [20, 21] for details.

Table 4. The score of the kth observation. Source: Own research

regression Bartlett
~ AT 1 — A AT A—12\"1 T .~-1 —
cor = FALSE | fy =L 87 (X~ X) | Foy=(L'9'L) L'¥ " (X4 - X)
~ ok ok ~k ok o x—1 ~ % 71A* ook —
cor = TRUE | fi,y =L R'X}, P = (L "L ) LT Xy,

If we define the scoring coefficient S. by

I:T.S‘fl7 cor = FALSE, scoresMethod = “regression”,
AT a—1a\~1 aTa—
s (LT\II 1L) L' 1, cor = FALSE, scoresMethod = “Bartlett”,
° i*TR_l cor = TRUE, scoresMethod = “regression”,

o % A k—1 &% -1 &k Ak —
(L T\II 1L ) L T\Il 1, cor = TRUE, scoresMethod = “Bartlett”,
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then the score of the kth observation simplifies to

£ = S. (X(k) — )_() , cor = FALSE,
") 7 SeX (s cor = TRUE.

If cor = FALSE, then the score matrix is

f;n (Xu)—)_f)IScT (X - X)'
f X —X) 8! X - X _
_[fe|_|He-X) | @ ) ST =(x-1x7)sl.
g L L
£ ) (X —X)" 87 (X —X)"
If cor = TRUE, then the score matrix is
T * *
fo\ (XS (X
fe 2)5e X2
=" 7= . = T|sl=x"s],
+ g .
f X(n)Se X (n)

where X™* = (X — 1XT) D~ 3. If we define

sealedx — | X —1X", cor = FALSE,
X*7 cor = ':[‘F{UE]7
then
F = scaledX - S/ . (2.3)

With the above notations, we have the following theorem which indicates that <2> vs <6> and <4>
vs <8> give us the same comparisons.

Theorem 2.3. The running matrices (R), eigenvalues (\), loadings (L), uniquenesses (¥ ), scoring
coefficients (S.), scaled data matrices (scaledX), score matrices (F') are the same for

(a) combinations <2> and <4>,

(b) combinations <6> and <8>.

Proof. If the running matrices (R) are the same, then the eigenvalues (\), loadings (L), uniquenesses
(®) are the same. If R, L, ¥ are the same, then by the definition of scoring coefficient S., we know
that S, are the same. If the scaled data matrices (scaledX) are the same, then by (2.3), the score
matrices (F') are the same. Thus it suffices to show that R and scaledX are the same.

(a) The running matrices R® = R vy (2.1). From Table 3, we see that

Yo =Yw =Xk,

thus the scaledX are the same. _
(b) The running matrices R” = R’ by Theorem 2.2. By (2.2), we have X5 = Y73, thus the
scaledX are the same. O

3 Numerical Examples

In this section, we will illustrate (2.1) and Theorems 2.2 and 2.3 by using the R package robustfa.
For the base functionalities of robustfa, we refer readers to the vignettes of [22].
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3.1 Example: hbk data

In this subsection, a data set hbk is used. The Hawkins, Bradu, and Kass data set hbk is from the
package robustbase consists of 75 observations in 4 dimensions (one response and three explanatory
variables). The first 10 observations are bad leverage points, and the next four points are good
leverage points (i.e., their @ are outlying, but the corresponding y fit the model quite well). We
will consider only the x-part of the data.

For x = hbk.x, we checked that S" # S", and R" = R’ for control = "mcd", "ogk", "m",
"mve", "sfast", "bisquare", "rocke", small differences between R" and R for control = "sde",
"surreal". The results illustrate Theorem 2.2. The R codes of the checking are:

compute_cov_cor(x = hbk.x, control = "mcd")
compute_cov_cor(x = hbk.x, control = "ogk")
compute_cov_cor(x = hbk.x, control = "m"
compute_cov_cor(x = hbk.x, control = "mve")
compute_cov_cor(x = hbk.x, control = "sde")
compute_cov_cor(x = hbk.x, control = "sfast")
compute_cov_cor(x = hbk.x, control = "surreal")
compute_cov_cor(x = hbk.x, control = "bisquare")
compute_cov_cor(x = hbk.x, control = "rocke")

The eigenvalues of the running matrices of the hbk data of the 8 combinations are given in Table
5. From Table 5 we see that the eigenvalues of <2>, <3>, and <4> are the same, the eigenvalues of
<6> and <8> are the same. The results illustrate (2.1) and Theorems 2.2 and 2.3. The R codes to
compute the eigenvalues for Table 5 are:

covC = CovClassic(x = hbk.x); covC
eigen(covC@cov)$values # <1>
eigen(cov2cor(covC@cov))$values # <2>

covMcd = CovRobust(x = hbk.x, control = "mcd"); covMcd
eigen(covMcd@cov)$values # <5>
eigen(cov2cor(covMcd@cov))$values # <6>

covC = CovClassic(x = scale(hbk.x)); covC
eigen(covC@cov)$values # <3>
eigen(cov2cor(covC@cov))$values # <4>

covMcd = CovRobust(x = scale(hbk.x), control = "mcd"); covMcd
eigen(covMcd@cov)$values # <7>
eigen(cov2cor(covMcd@cov))$values # <8>

Table 5. The eigenvalues of the running matrices for hbk data. Source: Own research

Classical Robust (MCD)

hbk.x cov | <1>216.16 1.98 0.92 | <5> 1.94 1.59 1.37
cor | <2>2.92 0.06 0.02 <6> 1.19 0.96 0.85
scale(hbk.x) | cov | <3>2.92 0.06 0.02 <7>0.12 0.03 0.01
cor | <4> 2.92 0.06 0.02 <8>1.19 0.96 0.85

Classical and robust (MCD) scatterplots of the first two factor scores of the hbk data with 97.5%
tolerance ellipses are plotted in Fig 1. We see that the scores of <2>, <3>, and <4> are the same,



Zhang et al.; BIMCS, 21(2), 1-15, 2017; Article no.BJMCS.31936

the scores of <6> and <8> are the same, in agree with Theorem 2.3. Note that the tolerance ellipse
is very large for <1>, since the outliers severely affected the eigenvalues of the running matrix S°.
While the tolerance ellipses are very small for <2>, <3>, and <4>, also due to the outliers severely
affected the eigenvalues of the running matrices R = §° = R°. The tolerance ellipse is very small
for <7> and it does not cover the regular points, due to the first two eigenvalues of <7> are very
small. It exemplifies that the results from robust covariance matrix of the scaled data is not very
reliable. The tolerance ellipses of <6> and <8> well separate the regular points and the outliers.
The R codes for the comparison <1> vs <5> are given as follows. The R codes for other comparisons
are similar and thus are omitted.

## <1> classical, x = hbk.x, cor = FALSE (covariance matrix)

faClassicl = FaClassic(x = hbk.x, factors = 2, method = "pca",

scoresMethod = "regression"); faClassicl

## <5> robust, x = hbk.x, cor = FALSE (covariance matrix)

faCovb = FaCov(x = hbk.x, factors = 2, method = "pca",

scoresMethod = "regression", cov.control = CovControlMcd()); faCov5

## <1> vs <b5>

usr <- par(mfrow = c(1,2))

cfaClassic <- list(center = c(0,0), cov = diag(faClassicl@eigenvalues[1:2]),
n.obs = faClassic1@n.obs)

rrcov:::.myellipse(faClassicl@scores, xcov = cfaClassic, main = "Classical",
xlab = "Factorl", ylab = "Factor2", xlim = c(-40,40), ylim = c(-5,28), id.n = 0)
abline(v = 0)

abline(h = 0)

text(5,0,labels = "1-13", cex = 0.8)

text(0.5,6,1labels = "14", cex = 0.8)

cfaCov <- list(center = c(0,0), cov = diag(faCovb@eigenvalues[1:2]),

n.obs = faCovb5@n.obs)

rrcov:::.myellipse(faCovb@scores, xcov = cfaCov, main = "Robust (MCD)",

xlab = "Factorl", ylab = "Factor2", xlim = c(-40,40), ylim = c(-5,28), id.n = 4)
text(22,9.5,1labels = "1-10", cex = 0.8)

abline(v = 0)

abline(h = 0)

par(usr)

3.2 Example: Stocks data

In this subsection, we apply the robust factor analysis solution to a real data set stock611. This
data set consists of 611 observations with 12 variables. The data set is from Chinese stock market
in the year 2001. It is used in [23] to illustrate factor analysis methods.

For x = stock611[,3:12],
cov_x = CovRobust(x = x, control = control)

gets error message for control = "mcd", "m", "mve", "sde", "sfast", thus we can not compute
cov_x, 8", and R" for these robust estimators. That is, we can not get results for combinations <5>
and <6> for these robust estimators. However, for x = scale(stock611[,3:12]), we can compute
COV_X, S’T, and R’ for these robust estimators, and we can get results for combinations <7> and
<8>. Although <6> and <8> have the same running matrices (R), eigenvalues (), loadings (L),
uniquenesses (¥), scoring coefficients (S.), scaled data matrices (scaledX), and score matrices (F),
as were proved in Theorem 2.3, we may not be able to get results for <6> due to computational
error for cov_x, while for <8> the computational error does not occur. That is why we recommend
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<4> vs <8> for classical and robust factor analysis.

The first two eigenvalues of the running matrices of the stock611 data of the 8 combinations are
given in Table 6. From Table 6 we see that the eigenvalues of <2>, <3> and <4> are the same, the
eigenvalues of <6> and <8> are the same. The results also illustrate (2.1) and Theorems 2.2 and
2.3. The R codes to compute the eigenvalues for Table 6 are:

covC = CovClassic(x = stock611[,3:12]); covC
eigen(covC@cov)$values # <1>

eigen(cov2cor(covC@cov))$values # <2>

covOgk = CovRobust(x = stock611[,3:12], control = "ogk"); covOgk
eigen(covOgk@cov)$values # <5>

eigen(cov2cor(covOgk@cov))$values # <6>

covC = CovClassic(x = scale(stock611[,3:12])); covC
eigen(covC@cov)$values # <3>

eigen(cov2cor(covC@cov))$values # <4>

covOgk = CovRobust(x = scale(stock611[,3:12]), control = "ogk"); covOgk
eigen(covOgk@cov)$values # <7>

eigen(cov2cor(covOgk@cov))$values # <8>

Classical Robust (MCD) Classical Robust (MCD)
24
w | w | w | w |
& & & &
33
& 1 & 1 & 1 & %
™ 2 o~ 2 o 2 o 21 e
3 g i 5 g
3 3 3 3
& = & = &g § = § =
M
v 0 0 0
13
- - @ S -
4
v | v | v | w |
i i T T
T T T T T T T T T T T T T T T T T
-40 0 20 40 -40 0 20 40 -40 0 20 40 -40 0 20 40
Factorl Factorl Factorl Factorl
Classical Robust (MCD) Classical Robust (MCD)
o | w0 | w0 | w |
& & < <
o o | o o
& & b b
w | v | w | w |
B 4 4 4
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15104 1530t
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Fig. 1. Classical and robust (MCD) scatterplots of the first two factor
scores of the hbk data with 97.5% tolerance ellipses. First row: <1 > vs
<Hh>;<3>vs<T7>. Second row: <2>vs <6>;<4>vs <8>

10



Zhang et al.; BIMCS, 21(2), 1-15, 2017; Article no.BJMCS.31936

Table 6. The first two eigenvalues of the running matrices of the stock611 data.
Source: Own research

Classical Robust (OGK)
stock611[,3:12]) cov | <1>4.27e+20 1.99e+19 | <5> 3.99e+17 7.36e+16
cor | <2>5.792.32 <6> 5.16 2.41
scale(stock611[,3:12])) | cov | <3> 5.79 2.32 <7>7.53e-01 2.97e-01
cor | <4>5.792.32 <8>5.16 2.41

Classical and robust (OGK) scatterplots of the first two factor scores of the stock611 data with
97.5% tolerance ellipses are plotted in fig 2. The scatterplots of the first two factor scores of
combinations <1> and <5> are not shown, because errors occur in

solve.default(S): system is computationally singular.

To get a clearer view of the scatterplots, we zoom in the scatterplots. We see that the scores of
<2>, <3>, and <4> are the same, the scores of <6> and <8> are the same, in agree with Theorem 2.3.
Note that the tolerance ellipses for <2>, <3>, and <4> cover the outliers, due to the outliers severely
affected the eigenvalues of the running matrices R® = S° = R". The tolerance ellipses of <6> and
<8> well separated the regular points and the outliers. The R codes for the comparison <4> vs <8>
are given as follows. The R codes for other comparisons are similar and thus are omitted.

## <4> classical, x = scale(stock611[,3:12]), cor = TRUE (correlation matrix)
faClassic4 = FaClassic(x = scale(stock611[,3:12]), factors = 2, cor = TRUE,
method = "pca", scoresMethod = "regression"); faClassic4

## <8> robust, x = scale(stock611[,3:12]), cor = TRUE (correlation matrix)
faCov8 = FaCov(x = scale(stock611[,3:12]), factors = 2, cor = TRUE, method = "pca",
scoresMethod = "regression", cov.control = CovControlOgk()); faCov8

## ZoomIn: xlim = c(-10,10), ylim = c(-10,10)

## <4> vs <8>

usr <- par(mfrow = c(1,2))

cfaClassic <- list(center = c(0,0), cov = diag(faClassic4@eigenvalues[1:2]),
n.obs = faClassic4@n.obs)

rrcov:::.myellipse(faClassic4@scores, xcov = cfaClassic, main = "Classical",

xlab = "Factorl", ylab = "Factor2", xlim = c(-10,10), ylim = c(-10,10), id.n = 0)
abline(v = 0)

abline(h = 0)

cfaCov <- list(center = c(0,0), cov = diag(faCov8@eigenvalues[1:2]),

n.obs = faCov8@n.obs)

rrcov:::.myellipse(faCov8@scores, xcov = cfaCov, main = "Robust (0GK)",

xlab = "Factorl", ylab = "Factor2", xlim = c(-10,10), ylim = c(-10,10), id.n = 0)

abline(v = 0)
abline(h = 0)
par (usr)
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Fig. 2. Classical and robust (OGK) scatterplots of the first two factt{rz'
scores of the stock611 data with 97.5% tolerance ellipses. First row: < 2 >
vs < 6 >. Second row: <3 > vs <7 >. Third row: <4 > vs <8 >
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4 Conclusions

Consider the factor analysis methods (classical or robust), the data input (data or scaled data), and
the running matrix (covariance or correlation) all together, there are 8 combinations. The objective
of our study is to give a recommendation for classical and robust factor analysis. First, when the
variables have different units, it is common to standardize the variables, and thus it is common
to use the correlation matrix as the running matrix. Second, we need to explain the factors from
the loading matrix. The entries of the loading matrix from the sample covariance matrix are not
limited between 0 and 1, which makes the explanations of the factors hard. The first two reasons
suggest us to choose <2> vs <6> and <4> vs <8>. Theorem 2.2 states that the robust correlation
matrices of the data and the scaled data are the same. Theorem 2.3 states that <2> and <4> (<6>
and <8>) have the same running matrices, eigenvalues, loadings, uniquenesses, scoring coefficients,
scaled data matrices, and score matrices. That is, <2> vs <6> and <4> vs <8> give us the same
comparisons. We can choose any pair to do the comparison. Third, we may not be able to compute
the robust covariance matrix, and thus the robust correlation matrix of the original data, as the
stocks data example illustrates. Consequently, we recommend <4> (classical factor analysis using
the correlation matrix of the scaled data as the running matrix) vs <8> (robust factor analysis using
the correlation matrix of the scaled data as the running matrix) for theoretical and computational
reasons. The hbk data and the stock611 data both illustrate the correctness of (2.1) and Theorems
2.2 and 2.3.

Finally, we give some additional suggestions for research in this area. For researchers and practitioners
using factor analysis method to deal with real data with outliers, we recommend them to carry out
classical and robust factor analysis using the correlation matrix of the scaled data as the running
matrix.
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