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Abstract

In this paper mul-level mult-objective fractional programming problem (-MOFP) is considere
where some or all of its coefficients in the objectivection are rough intervals. At the first phase of the
solution approach and to avoid the complexity of the probtenm FP problems with interval coefficients
will be constructed. One of these problems was a FP pnobleere all of its coefficients are lower
approximations of the rough intervals and the other probleas a FP problem where all of its
coefficients are upper approximations of rough intervals. Atscond phase, a membership function
was constructed to develop a fuzzy goal programming modebtaining the satisfactory solution of the
multi-level multi-objective fractional programming problenhellinearization process introduced by Pal
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et al. [1] will be applied to linearize the membershipdiions.. Finally, a numerical example will
introduced to illustrate the theoretical results.

Keywords: Multi-level programming; Multi-objective prograimgy fractional programming; rough
intervals programming; Fuzzy goal programming.
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List of Symbols

FP . Fractional programming

DM . Decision maker.

MLMP :  Multi-level mathematical programming.
BLMP . Bi-level mathematical programming.
ML-MOFP . Multi-level Multi-objective fractional programming.
LP . Linear programming.

FLDM . First level decision maker.

SLDM . Second level decision maker.

LFPs . Linear fractional programming problems.
LI . Lower intervals.

Ul . Upper intervals.

FP1 . Fractional programmingl.

FP2 . Fractional programming2.

FP3 :  Fractional programming3.

FP4 . Fractional programming4.

FGP Fuzzy goal programming.

1 Introduction

A hierarchical decision structures are common in governrpelities, competitive economic systems,
supply chains, agriculture, bio fuel production, vehicle ga#mning problems, and so on. These types of
problems can be formulated using a multi-level mathemagimgramming (MLMP) approach. In MLMP
problems, one decision maker (DM) is located at eachidadisvel, and objective functions needs to be
optimized [2,3,4]. Multi-level optimization is a techniqueve®ped to solve decentralized problems with
multiple decision-makers in hierarchical organizations [5]

During the past few decades, MLMP [2,3,6] as well asew®! mathematical programming (BLMP)
problems [7,8] have been deeply studied and many methodelbgiee been established for treating such
problems. The uses of the concept of the membership functiofuzaly set theory to multi-level
programming problems for satisfactory decision was firssented by Lai [9]Sakawa et al. [10] developed
an interactive fuzzy programming for MLMP with fuzzy aareters. Also, Abo-Sinna and Baky [2]
presented balance space approach for multi-level multi-ilggarogramming problems.

In various areas of the real world, the problems are modaetea multi-objective programming. Many
methodologies have been presented for treating such prokl¢nktovever, the issue of choosing a proper
method in a given context is still a subject of activeaesh.

Fractional programming deals with the optimization of one orenratios of functions subject to set
constraints. Recently, fractional programming has beconee aj the planning tools. It is applied in
engineering, business, finance, economics and other dissgll,3,8,11]. Computer oriented technique was
extended by Helmy et al. [12] to solve a special clagdloMOFP problems.
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Emam [13] presented a bi-level integer non-linear programgnproblem with linear or non-linear
constraints, and in which the non-linear objective functibeach level were maximized. It proposed a two
planner integer model and a solution method for solving phidblem. Therefore Emam proposed an
interactive approach for solving bi-level integer multi-okjeefractional programming problem [14].

The rough set expressed by a boundary region of a set vghdescribed by lower and upper approximation
sets where the set is considered as a crisp set Baimedary region is empty. This is exactly the idea of
vagueness [15,16]. The approach for solving rough interegiramming problem is to convert the objective
function from rough interval to crisp using theorem of cespluation. Roughness is a kind of uncertainty,
another kind of uncertainty introduced in [17].

Hamzehee et al. [18] presented a linear programminggtdblem which is considered where some or all of
its coefficients in the objective function and /or consteaiate rough intervals. In order to solve this

problem, two LP problems with interval coefficients will benstructed. One of these problems is a LP
where all of its coefficients are upper approximationsoafjh intervals and the other problem is a LP where
all of its coefficients are lower approximations of gbuntervals. Using these two LPs, two newly solutions
are defined.

Many researches have been done in the area of roughdsebugh intervals [19- 22].

In this paper multi-level multi-objective fractionalggramming problem is considered when some or all of
the coefficients of the objective functions are rougbrivels. The remaining of the paper unfolds as follows:
Section 2 introduces formulation and solution concept. Section rddirtes the solution algorithm. In
section 4, an illustrative example will be introduced. Fjnédh Section 4, conclusion and some open points
for future research work are stated in the field of rougfervals multi-level multi-objective fractional
programming problems.

2 Problem Formulation and Solution Concept

Multi-level programming problems have more than one decision mAkdecision maker is located at each
decision level and a vector of fractional objective fumioeeds to be optimized. Consider the hierarchical
system be composed of a t-level decision makers. Let ttisiale maker at th&"-level denoted bpM;
controls over the decision variabbg = (x1,Xi3, ..., Xin,) € R™,i = 1,2, ..., t. wherex = (xq, %y, ..., x;) €

R™ andn = ¥!_, n;.

Mathematically, ML-MOFP problem with rough intervals in thigjective functions of maximization-type
may be formulated as follows:

[15t Level]
max Fy(x) = max (£ (0, f12 (0, o fim, (), 1

where x5, X3, ..., X; Solves

[2™ Level]
max F(x) = max (£ (), 120, - fomy () @)

where x, solves
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[ tth Level]

max F(0) = max (fu @), fro (), o, fim, ), (3)
subject to

xEG=!x€R"

Alxl + Azxz + -+ Atxt( )b:x 2 O;b € Rm}; (4)

IV 1A

where

Ny _ B (leh el (e, el) + (e @) (@ @1)

Dy(x) Z;-n:il dijx; + Bij

fij(x) = i=12, ..t (5)

F;(x), F,(x) andF;(x) are the objective functions of the first level decision mgk&DM), second level
decision maker (SLDM) and the third level decision maker reisede

G is the multi-level multi-objective convex constraint se

(Ick, 4], [ci.eij]) are rough intervals coefficients of the objective fiorg

—L —U .
(laf;, afj]. [@ij. @;;]) are rough intervals constants of the numerator.

It is customary to assume that (x) > 0V x € G, also angs;; are constants of the denominator.

Conversion of (ML-MOFP) problem with rough coefficient in attiee functions into upper and lower
approximations is usually a hard work for many cases, bosfgamation process needs to know the
following definitions [18]:

Definition 1 [18]:

Rough Interval (RI) can be considered as a qualitative vatue ¥ague concept defined on a variabla
R.

Definition 2 [18]:

The qualitative valud is called a rough interval when one can assign two cliose/alsA* andA, onR to
it whered, € A C A"

Remark 1[18]:
According to the rough interval properties we have

L
J

[l < [c 5]~ cj<ch<ci<c,

Now, the equivalent problems of the (ML-MOFP) probleithwough coefficients in objective functions by
using intervals method can be reformulated as follows:
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The surely optimal range of ML-MOFP problem (1)-(5) cargbien by solving the following two classical
LFPs:

(Thelower intervalsin the objective functions (L1))

FPL FP2:

[15t Level] [15t Level]

max Fi(x) = max (f11(x):f12(x): ---:f1m1(x)), max Fi(x) = max (f11(x):f12(x): ---'f1m1(x)),
1 1 ®) 1 1 1)

where x5, X3, ..., X; Solves where x5, X3, ..., X; Solves

[2" Level] [2™ Level]

max Fo(x) = max (fu1(®), fr2(0), o, fom, ), max Fy(x) = max (f,(0), o), ., fom, (),

O (12)
where x, solves where x, solves
[t Level] [t Level]
max Fo(x) = max (fu @), o8, o fom, @), max F(O = max (£ (0, frz (), oo fim, (),
Xt Xt Xt Xt
8 (13)
subject to subject to
< <
xERn A1x1+A2x2+"’+Atxt (:)b,x > 0, xERn A1x1+A2x2+"’+Atxt (:)b,xZ 0,
beR™ beR™
) (14)
where Where
£ = M@ _ Tin iy ey £ = M@ Lina Gy e
Y Dij(x) Z;n:ll dl-jxj +ﬁij’ Y Dij(x) Z;n:ll dl-jxj +.Bij'
=12, ..t (10) =12, ..t (15)

While the possibly optimal range of ML-MOFP problem (1)-€&n be gotten by solving the following two
classical LFPs:

(The upper intervalsin the objective functions (Ul)

FP3: FP4:

[15t Level] [15¢ Level]

max Fy(x) = max F(x) =
X1 X1
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FP3: FP4:
max (f11(x),f12 (%), ) fim, (x)),(lG) max (f11(x)'f12(x): ---:f1m1(x))a(21)
X1 X1
where x5, X3, ..., X; Solves where x,, X3, ..., X; solves
[2" Level] [2™ Level]
max F,(x) = max (le(x).fzz(x), ...,mez(x)). max F(x) = max (fu(x),fzz(x). wes f2m, (x)),
X2 x2 X2 X2
a7 (22)
where x; solves where x, solves
[t Level] [t Level]
max F(x) = %(ﬁ1(x):ftz(x): ---:ftmt(x)): max Fe(x) = max (ft1(x):ft2(x): ---'ftmt(x))'
Xt Xt Xt Xt
(18) (23)
subject to subject to
X€EG= XEG=
< <
x € R" Aixg +Ayxy + o+ Apxy <=> b,x >0, x € R™ Aixy + Ayxy + o+ Apxy <=> b,x >0,
= =
beR™ beR™
(29) (24)
where Where
i =L —L
Ny(x) Xt Cyx + @
(x) = = - , 1L mi _U . _U
fij () D) I dyx; + By £ = Ny _ Y Cixg + @ L
= i m; ’
=12, ..t oy Dy(x) X7 dijx; + By

=12,..,t (25)

For solving the previous classical four (ML-MOFP) problesimultaneously, the fuzzy goal programming
approach will be applied. The linearization procedure intredusy pal et al. [1{vill be applied to linearize
the membership goals.

2.1 Fuzzy goal programming appr oach for (ML-M OFP) problems

The vector of objective functions for each decision makéorimulated as a fuzzy goal characterized by the
membership function,s(fij)’ (i=12..,t), (G=12,..,m), ateach level.

2.1.1 Characterization of member ship functions

To define the membership functions of the fuzzy goals edjgbctive function's individual maximum is
taken as the corresponding aspiration level, as follows:[3,4]

w;j = max (fl-j(x)), (i=12,..,0,(=12.,m). (26)

X€EG
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where u;;, (i = 1,2,...,t), (j =1,2,..,m;), give the upper tolerance limit or aspiration level of

achievement for the membership functioniff objective function. Similarly, each objective funct®n
individual minimum is taken as the corresponding aspiraticgl,le¢ follows:

gy =min (f;®), (=120, =12,..,m). 27)
X€EG
whereg;;, (i =12,..,t), (j=1.2,..,m), give the lower tolerance limit or lowest acceptable llefe
achievement for the membership functionjéf objective function. It can be assumed reasonably theesal
of (fij(x)) zu; (=12,..,t), (j=12,..,m;), are acceptable and all values less thap=

min (fij(x)), are absolutely unacceptable. Then, the membership furmgi(qfi,-(x)), as shown in

XEG
Fig(1.a), for thej** fuzzy goal can be formulated as [4]:

1, if (fij(x)) 2 W,
oy (@) -y . ._ |
o (fu(x)) B R if gi; < (ﬁ-,-(x)) <wy, (=12.,60,(j=12.,m), (28
ij — Yij
0, if (f30) < gy,
“(fr';j 4
1

: - -

Gij Ujj | fi; (=) )
I’a‘l
LES

Fig. 1. (@) member ship functions of (fi]-(x))

2.2 Fuzzy goal programming methodology

In the decision-making context, each decision maker is Btetén maximizing his or her own objective
function; the optimal solution of each DM, when calcudate isolation, would be considered as the best
solution and the associated value of the objective funciionbe considered as the aspiration level of the
corresponding fuzzy goal. In fuzzy programming approdehhtghest degree of membership is one. For the
defined membership functions in equation (28), the flexitdenbership goals having the aspired level unity
can be represented as follows:

ury (fi@) + dj—dly =1, (i=12,..,0, (=12,.,m), (29)
or equivalently as:

(fij(x)) - 9ij

- + d{j - di+]- =1 (=12..,t, (=12,..,m), (30)
Uij — gij
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where djj, df; 2 0 with dj; df; =0, (i =12,..,t), (j=12,..,m;) represent the under- and over-
deviations, respectively, from the aspired levels [3]:

In the methodology of goal programming, the under- and oveiiatittnal variables are included in the
achievement function for minimizing them depends on the @fplee objective functions to be optimized. In
the proposed FGP approach, the sum of under deviatioriablear is required to be minimized to achieve
the aspired level. It may be noted that any over-deviditon a fuzzy goal indicates the full achievement of
the membership value [3]. The equivalent proposed final flM@FP) model of the problem can be
formulated as follows:

my mp me
min Z=Zw;j d;j+zw;jd;j+---+2w;jd;j, BD
j=1 j=1 Jj=1
subject to
(fi@)-gy , .
——————+dj—df =1, (=12.,0,(=12.,m), (32)
Uij = Gij
Xik = X (i=12..,t-1), (k=12 ..,n), (33)
<
XEG= {x € R"|A1x1 + Axx; + "'+Atxt<=>b'x 20, beRrR™ } (34)
=
dj df; = 0,and djj,df; 20, (i =1.2,...,t), (j =12,..,m), (35)

whereZ represents the achievement function consisting of #ighted under-deviational variables of the
fuzzy goals. The numerical weightg; represent the relative importance of achieving the aspinesls! of
the respective fuzzy goals. To assess the relative inmoertaf the fuzzy goals properly, the valuesvgf
are determined as [3]:

1
wi=—— (=12..,0,(=12..,m), (36)
Uij — Gij

2.3 Linearization of member ship goals

It can be easily noted that the membership goals in equati®nargnonlinear in nature and this may needs
difficult computational in the solution process. To avoid thpsablems, a linearization procedure is
presented in this section [1]. The linearization prodesshe membership goals in (32) considering the

expression of;;(x) in equation (5) will be firstly introduced.

Theij*® membership goals can be presented as:

wry (fy@) +dj —dfs = 1, 37)
o 1
Lij (fu(x)) - L’-Jg’-J + dU — dU = 1, where Ll.] = m; (38)
N::(x n C.L.x. + a/.L.
fii(o0 = 60) _ 2G5t g,

D;i(x) X', dyx; + By
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using the expression of;;(x) , the above goal in equation (38) can be presented as:

L )x+a

-1 +djj—df =1, 39)
ij (d,,)x +ﬁl} ij9ij ij

Lyl Cebyx + ab] = Lygyl@ix + By] + d5[dyx + By] - di[(dipx + By = [ + By,
Ly[ (eidx + afi] + dj[(dipx + Biy] — df[(dipx + ] = (1 + Lijgi))[(dipx + By,

Lij[ Cepx + afi] +dij[(di)x + By;] = dif[(dipx + Bij] = LE[(diy)x + By,

where LY; = (1 + L;jg;;),

[Lij () — LY(dip]x +dij[ (dip)x + By] — di[ (dipdx + Bi;] = [LY(B) — Lij(ab)],

CL x + dU [(dl])x + ﬁt}] [(dl.j)x + ﬂl.]] - GUr (40)
Where
Ch =Ly () — LY (dy)]and (41a)
=[1%(B;;) — Lij(afy)] (i =12,..,0),(G =12, .., m) (41b)

Thus, considering the method of variable change preddaytéal et al. [1] the goal expression in equation
(39) can be linearized as follows.

By setting,
Djj = dij[(di)x + Bij| and D5 = df[(dij)x + B, (42)
Then the linear form of expression in equation (40) is obtaased

(Cix +Dj; — D = G

Gij, (43)

with  D;;, Dt = 0; and D;; D = 0 since d;;,d;; = 0 and (dy)x +f;; > 0. Now, it is noted that,
minimization of d;; means minimization ab;; = du[(d,-,-)x + ﬁi,-] which is also nonlinear. It may be noted
that when the membership goal is fully achie\d{g; 0, and when its achievement is zedg, = 1, are
found in the solution [2,19]. So, involvement djf < 1, in the solution leads to impose the following
constraint in the model of the problem:

by (44)
[(dy)x +Bi] ~

Now, based on the simplest version of goal programming, itta¢ proposed FGP model of tHEP1)
becomes:
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my my mg
min z=zw;j D;j+zw;jD;j+---+2ngD;j, (45)
j=1 j=1 Jj=1
subject to
Chix +Dj— D = C, (i=12..,00(=12.,m), (46)
Xik = Xipo (=12, t=1), (k=12..,m), (47)
_(du)x + D,; < ﬁij' (l = 1,2, ey t), (] = 1,2, ...,mi), (48)
<
xeG:{xERnAlxl+A2xz+"'+Atxt(=>b,x20; bERm} (49)
=
D;, D% =20, (i=12,..,t), =12,..,m), (50)

Similarly, applying the linearization process of the mershigrgoals considering the expressiorf;pfx) in
equations (15),(20) and (25).

3 Solution Algorithm

Step (3: reformulate problem (1)-(5) into (FP1), (FP2), (FEBY (FP4).
Step (2: For problem (FP1), Compute;, g;;, wij,i = 1,2,...,t,j = 1,..,m;.

Step (3: Construct the membership functjqp(fij(x)),i =12,..,tj=1,..,m.

Step (3: ComputeCi;and Gj;,i = 1,2,...,t,j = 1,...,m; according to equation (41a), (41b).

Step (9: Do the linearization process foy; (fij(x)) according to equation (43).

Step (6: Puti = 1 in FGP model (45)-(50).

Step (J: SolveFGP model (45)-(50) to get,, = x;, .,k = 1,2, ...,n;.

Step (§: puti =i+ 1 in FGP model (45)-(50) and go to step (7).

Step (9: If i >t —1, go to step (10), otherwise go to step (8).

Step (19: SolveFGP model (45)-(50) withx;, = x;,,i=1,2,...,t =1,k =12,...,n;.
Step (1): If the DM solves (FP2), (FP3), and (FP4) go to step tti&rwise go to stepl2.
Step (12: Repeat steps from (2) to (10) for (FP2), (FP3), &Ri{.

Step (13: Define the surely and possibly optimal range for pnob(&)-(5).

Step (14: Stop.

10
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4 An lllustrative Example

To demonstrate the proposed FGP approach, consider theifg (ML — MOFP) problem with rough
intervals in the objective functions.

[15¢ Level |

’

/ _ 2([2!3]1 [1,5]).7('1 + ([315]1 [2,7]).7('2 + x3 + ([213]1 [114])
fir = 2x1+x, +x3+1
@Ekf_jhﬂﬁ%%—&+mﬂﬂﬂﬂﬁﬂmH%D}

X1
Xy +x3+3

where x,, x3solves

[27 Level|
_ 2x, + ([5,6], [3,8])x, — 2([0,3],[0,6])x; + ([5,6],[3,7])
21 = X1 +x3+4 ’
mex _x = (1341 [26Dx; + ([L3][L7Dxs + ([34],[2,6]) |
z foz = 2% +x3+6

where x3solves

[374 Level]

/ _ ([215]1 [118]))61 - 2x2 + xS + ([415]r [3,6]) \
| fa1 = X3+ 2 ’

max 5%, + 2([1,2], [14Dx, — x5 + ([6,7], [58]) |
X =
: 32 X1+ 3x, +x3+7 /
subject to

3xy + 5x, + x5 < 35,
2xq — x5 + 12x5 < 20,
5x; + 6x3 <16,

X1, X9, %3 = 0.

For solving the previous example, it will be reformulatew ilower intervals problems and upper intervals
problems as follows [18]:

11
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(Thelower intervals coefficients (L 1))

FP1: FP2:
[15t Level] [15¢ Level]
max (4x1+3x2+x3 +2 ) 6x1—x2+x3+1), max (6x1 +5x2+x3+3 ) 7X1—X3 +3x3+3)'
—— 2x1+x+x3+1 Xp+x3+3 —— 2x1+x+x3+1 Xp+x3+3
X1 X1

where x,,x3 solves

[2"¢ Level]

2x1+5x2+5 x1-3x2+x3+3
max ( ,
—— \ x1+x3+4 2x1+x3+6
X2

where x3 solves

2x1—2X2+x3+4 5x1+2x3—x3+6
max ( 1 2+X3 , 1 2-X3 )
—— xX3+2 X1+3x2+x3+7
X3
subject to

3xy + 5x, + x5 < 35,
2x1 —x, +12x53 < 20,

5x, + 6x3 < 16,

X1, Xp, X3 = 0.

where x,,x3 solves

[2" Level]

2X1+6X5—6X3+6 X1—4Xy+3X3+4
max ( ,
— X1+X3+4 2x1+Xx3+6
x2

where x3 solves

5x1—-2x2+x3+5 5x1+4x3—-x3+7
max ( 1 2+X3 , 1 27X3
—— x3+2 X1+3x2+x3+7
X3
subject to

3xq + 5x, + x5 < 35,
2x1 —x, + 12x3 < 20,

5x, + 6x3 < 16,

X1, X9, %3 = 0.

)

(The upper intervals coefficients (Ul)

FP3: FP4:
[15t Level] [15¢ Level]
max (2x1+2x2+x3+1 ) le—x2+x3)' max (10x1+7x2 +x3+4 ) 9x1—X3 +6x3+5)'
—— 2x1+x2+x3+1 Xp+x3+3 —— 2x1+x2+x3+1 Xp+x3+3
X1 X1

where x5, x3 solves

[2" Level]

2x1+3x2+3 X1—-2Xp+x3+2
max ( ,
—— \ xi+x3+4 2x1+X3+6
x2

where x5 solves

X1—2X2+x3+3 5x1+2x2—x3+5
max ( 1 2+X3 , 1 27X3 )
—— X3+2 X1+3x2+x3+7

X3
subject to

where x,, x3 solves

[2"¢ Level]

2x1+8X5—12x3+7 X1—6X2+7x3+6
max ( s
—— X1+X3+4 2x1+x3+6
x2

where x3 solves

8x1—2x2+x3+6 5x1+8x3—x3+8
max ( 1 2+X3 ) 1 27X3 )
—— X3+2 X1+3x+x3+7
x3
subject to

12
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3x; + 5x, + x3 < 35, 3x; + 5x, + x3 < 35,
2x1 —x, +12x3 < 20, 2x1 — x, + 12x3 < 20,
5x, + 6x3 <16, 5x, + 6x3; < 16,

X1, Xp, X3 = 0. X1, X9, X3 = 0.

For solving (FP1), the individual maximum and minimum valuessaramarized in Table 1. The decided
aspiration levels, upper tolerance limits and the weightsre also considered.

Table 1. Individual maximum, minimum values, u;;, g;; and weightsw;;.

f11(x) f12(x) fo1(x) f22(%) f31(%) f32(%)
max (fl.j(x)) 2.76190! 20.333: 5.2t 0.608¢ 12 3.2941:
min (fij(x)) 1.375 -0.354838 0.882353 -1.1 0.4 0.5
uj 2.7 20 5 0.6 12 3.2
gij 1.3 -0.35 0.88 -1 0.4 0.5
w;; 0.71¢ 0.09¢ 0.24: 0.62¢ 0.08¢ 0.37

The coefficient of the linearized membership goals arsgmted in Table 2.

Table 2. The coefficient of the linearized membership goals (€¥)" and G;;

fi1(x) fi2(%) f21(%) f22(x) f3: (%) f32(x)
(¢ T -1 \7 0.294 \" —0.728\" s -125\" /0172\" [/ 0.665\"
- ( 0.214 ) (—1.029) ( 1.215 > (—1.875) (—0.172) (—2.815)
-1.214 —0.931 0.001 —2.25 —0.948 —1.555
Gh 0.5 2.891 3.641 0.375 1.724 6.075

4.1 Solving the 1% level FGP model

min Z = 0.714D;; + 0.094D;,

subject to

—x; +0.214x, — 1.214x; + D;; — D{; = 0.5,
0.294x; — 1.029x, — 0.931x;+D;, — Dy, = 2.891,
—2x; —x, —x3+D; <1,

—x, —x3+D;, <3,

3x; + 5%, + x3 < 35,

2x1 — x, + 12x3 < 20,

5x, 4+ 6x3 < 16,

- p+ p- p+
X1, X2, %3, D11, D11, D15, D1 2 0

13
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Using Lingo programming, the compromise solution of tHevel problem is obtained agix?, x9,x9 ) =
(0,2.3364,0).

4.2 Solving the 2" level FGP model

minZ = 0.714D;; + 0.094D;, + 0.243D5; + 0.625D,,
subject to

—x; +0.214x, — 1.214x; + D;; — D{; = 0.5,
0.294x; — 1.029x, — 0.931x,+Dy, — Df;, = 2.891,
—0.728x; + 1.215x, + 0.001x5 + D;; — DF; = 3.641,
—1.25x, — 1.875x, — 2.25x5 + D5, — DS, = 0.375,
—2x, — X, —x3+Df; <1,

—Xx, —x3+ Dy, <3,

—x1 —x3+Dy; <4,

—2x; — x5+ D3, <6,

3xq + 5x, + x5 < 35,

2x1 —x, + 12x3 < 20,

5x, + 6x3 <16,

x, =0,

X3, X3, D11, Dfy, D1z, Di, D31, D31, D32, D5 2 0.

Using Lingo programming, the compromise solution of2devel problem is obtained ag:9, (19, 1) =
(00,0).

4.3 Solving the 3" level FGP model

minZ = 0.714D;; + 0.094Dy, + 0.243D5; + 0.625D5, + 0.086D3; + 0.37Ds,
subject to

—x; + 0.214x, — 1.214x; + D;; — D{; = 0.5,

0.294x; — 1.029x, — 0.931x5+D;, — D, = 2.891,

—0.728x; + 1.215x, + 0.001x5 + D;; — D}, = 3.641,

—1.25x, — 1.875x, — 2.25x5 + D3, — DJ, = 0.375,

14
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0.172x; — 0.172x, — 0.948x5 + D3; — Df; = 1.724,
0.665x; — 2.815x, — 1.555x5+D;, — D, = 6.075,
—2x1 —x, —x3+ D3 <1,

—X, —x3+ D, <3,

—x; —x3+D;; <4,

—2x, —x3+ D5, <6,

—x3 + D3 <2,

—x1—3x, —x3+ D3, <7,

3x; + 5x, + x3 < 35,

2x1 —x, +12x3 < 20,

5x, + 6x3 < 16,

x; =0,

x, =0,

x3, D1, Dfy, D1y, Dy, D3y, D31, D35, DS, 2 0.

Using Lingo programming, the compromise solution of tfdeel problem is obtained a&:?, x9,x9) =
(0,0,0).

andfy,; =2, fi, =0.33333, fo; = 1.25, f5, =05, fo; =2, fs, = 0.85714.

Similarly, applying the proposed algorithm to solve (FRRP3) and (FP4), we get the following intervals:

The surely optimal range The possibly optimal range

FLDM: —
fi1 f11| = [1.1838462,4].
[I_tlipfl]l] =[2,3], 11 11]

—L U
|Fha £12] = [0.333333,1], Fiz F1z| = [-0.0577434,1.666666].
. —L U
SLDM: [F31F2] = [0.88788465,1.75],
[f50. 18] = [125,15)
—L U
[1_’%2,[5’2] = [0.5,0.666666], [fzz,fzz] = [0.2720512667 ,1].
. —L U
TLDM: Fau Faz| = [13161538,3].

[f_rlé1rf_rg1] =[2,2.5],

—L U
|fhe £5] = [0.58714,1], [F32F 32 = 107108077816 ,1.142857143].
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5 Conclusion and Summary

Multi-level multi-objective fractional programming probleil(-MOFP) was considered where some or all
of its coefficients in the objective function are rougteiaals. Two FP problems with interval coefficients
constructed. One of these problems was a FP wherd @ coefficients are lower approximation of the
rough intervals and the other problem was a FP where all cbéficients are upper approximations of
rough intervals. A fuzzy goal programming model has been foretutatobtain the satisfactory solution of
the multi-level multi-objective fractional programming problem

At the end, there exist many other open points for futuekwand research which should be explored and
studied in the area of multi- level multi-objective rough iméoptimization such as:

1. An algorithm is required for treating multi-level multijebtive integer fractional decision-making
problems with rough parameters in the objective functionthidrconstraints and in both.

2. An algorithm is needed for dealing with multi- level mubjective mixed integer fractional
decision-making problems with rough parameters in the dbgefiinctions; in the constraints and
in both.

3. An algorithm must be investigated for treating multivele multi-objective integer quadratic
decision-making problems with rough parameters in the dbgefiinctions; in the constraints and
in both.
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