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Review Article

ABSTRACT

Time Series Forecasting (TSF) involves predicting future values and trends of data at specific points
or periods by analyzing historical patterns, such as trends and seasonality. With the advent of IoT
sensors, traditional machine learning approaches struggle to handle massive time series datasets.
Recently, deep learning algorithms, exemplified by convolutional neural networks (CNNSs), recurrent
neural networks (RNNs), and Transformer models, have made significant progress in time series
forecasting tasks. This paper reviews the common features of time series data, relevant datasets,
and evaluation metrics for models. It also conducts experimental comparisons of various forecasting
algorithms, focusing on time and algorithmic architectures. This paper conducts prediction
experiments on several deep learning models using the ETT dataset and presents the final results.
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We evaluate model performance using metrics like Mean Absolute Error (MAE) and Mean Squared
Error (MSE). We highlight the strengths and weaknesses of deep learning-based TSF methods.
Major deep learning-based time series forecasting methods are introduced and compared. Finally,
challenges and future research directions in applying deep learning to time series forecasting are

discussed.

Keywords: Deep learning; time series forecasting; recurrent neural networks; gated recurrent units;

transformer model.
1. INTRODUCTION

Time series data exist widely in domains like
finance, healthcare, energy, transportation, and
meteorology and are easily accessible. However,
with the widespread use of sensing devices and
advancements in data processing, time series
data are being generated at an explosive rate.
Analyzing these data is crucial for extracting

valuable information, such as weather
predictions, traffic flow forecasts, financial
analysis, flu trend monitoring, medical

responses, and system workload management
(Eslin & Agon, 2012).

Time Series Forecasting is a critical tool for
making predictions based on historical data that
is collected over time. By leveraging various
statistical and machine learning models,
businesses and researchers can predict future
events, trends, and behaviors in areas ranging
from finance to weather forecasting. While
traditional machine learning methods (like
decision trees, random forests, and linear
regression) can be applied to time series
forecasting, they face significant challenges due
to the unique nature of time series data, including
temporal dependence, seasonality, non-
stationarity, and the need for careful feature
engineering. These methods often require
substantial preprocessing and feature
engineering to capture the temporal patterns.
Specifically, traditional statistical models, such as
Support  Vector Machines (SVM) and
Autoregressive Models (AR), require
manual configuration of seasonal and trend
components (Gers et al., 2000; Durbin &
Koopman, 2012), limiting their efficiency and
accuracy with large-scale datasets. Deep
neural networks (DNNs) offer an alternative
due to their ability to extract high-level
features and identify complex patterns within and
across time series with minimal manual effort.
However, DNNs require extensive training data
due to their reliance on fewer structural
assumptions.

Convolutional Neural Networks (CNNs), as one
of the most representative network architectures
in deep learning (Shaowei et al., 2023), hold

broad application prospects in this field.
Compared to traditional methods, CNNs
demonstrate superior capabilities in feature

extraction and information mining. While CNNs
are highly effective for processing image data,
they face limitations when applied to time series
data, such as sequences, speech, and text.
Specifically, CNNs struggle to capture long-range
dependencies in time series. Although increasing
the depth of convolutional layers can expand the
receptive field, it often remains insufficient for
modeling long-term  dependencies  within
sequences. In 1990, Jeffrey Elman introduced
the foundational concept and structure of
Recurrent Neural Networks (RNNSs) in his paper
Finding Structure in Time. Elman's model
introduced the concept of a hidden layer (or
internal state), which stores information about
previous elements in a sequence and uses it to
predict the next element. This breakthrough
opened the door for RNN applications in natural
language processing, time series analysis, and
other domains. Subsequently, RNNs evolved to
address issues like vanishing and exploding
gradients in long-sequence processing through
variants such as Long Short-Term Memory
(LSTM) networks and Gated Recurrent Units
(GRU). In 2017, Vaswani et al. proposed the
Transformer architecture, introducing the self-
attention mechanism—a key innovation that
enables exceptional performance in
processing sequence data. The Transformer's
self-attention mechanism captures long-term
dependencies, addressing limitations  of
traditional RNNs in long-range prediction and
parallel computation. As a result, Transformers
have achieved remarkable performance in time
series forecasting tasks.

In modern domains, time series forecasting
methods are already well-established. For
instance, Facebook's visual interactive network
(VIN) employs bidirectional LSTM to effectively
capture temporal information in videos (Michael
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et al., 2024). Chinese researchers have also
achieved significant results in tasks such as
image captioning and video classification. For
example, the Chinese Academy of Sciences
proposed the spatio-temporal attention network
(STAN), which uses bidirectional GRU to
enhance video classification accuracy (Hanen et
al., 2024). Photovoltaics (PV), one of the most
promising renewable energy sources, requires
accurate power forecasting to ensure the safe
operation and economic integration of PV
systems in smart grids. Mohamed Abdel-Nasser
et al. proposed an LSTM-RNN-based method for
predicting PV system output power, providing a
useful tool for smart grid planning and control
(Abdel-Nasser & Mahmoud, 2019; Qiang et al.,
2020). Qiang Cui et al. introduced a Multi-View
Recurrent Neural Network (MV-RNN) model to
handle sequence recommendations and cold-
start issues. By integrating visual and textual
information, MV-RNN  mitigates  cold-start
problems, dynamically captures user interests,
generates personalized ranking lists, addresses
missing modality issues, and alleviates cold-start
challenges (Qiang et al., 2020). Shaowei Pan et
al. proposed a hybrid model (CNN-LSTM-SA),
combining  Convolutional Neural Networks
(CNNs), LSTM networks, and self-attention
mechanisms (SA). This model achieved optimal
performance in capturing fundamental trends and
predicting specific values for oil well production
(Shaowei et al., 2023). In the field of speech
recognition, RNNs and their variants have
achieved  significant breakthroughs. For
example, Microsoft's deep neural network (DNN)
combined with LSTM demonstrated excellent
performance in speech recognition competitions.
Domestic companies such as IFLYTEK and
Sogou have also adopted RNN-based
technologies to improve speech recognition
accuracy (Fang et al., 2021). In hydrological time
series forecasting, Muhammad Waqgas et al.
demonstrated the effectiveness of RNNs and
LSTMs in modeling nonlinear and time-varying
hydrological systems, making them a research
hotspot (Wagas & Humphries, 2024. The
Transformer's self-attention mechanism excels in
capturing long-range dependencies, offering
superior temporal modeling capabilities and
advantages in handling time series data (Wen et
al., 2023). Liu et al. proposed a de-stationary
framework to address over-stabilization issues in
processing raw time series data (Liu et al., 2022).
Additionally, Liu et al. recently introduced an
inverted input approach that reassigns roles
between the attention module and the
feedforward neural network (Liu et al., 2024),

effectively enhancing SOTA model performance.
In 2023, Zhang et al. proposed a multi-scale
pyramid Transformer model called MTPNet
(Zzhang et al.,, 2024). The use of multi-layer
Transformer structures with different scales has
solved the problem of time dependent modeling
for fixed or constrained scales. Some studies,
such as the BERT model, adopt learnable
position  encodings to learn  positional
embeddings from time series through training.
For instance, Jin et al.,, (2021) proposed the
TrafficBERT model for traffic flow prediction.
Additionally, Li et al., (2019) replaced traditional
position encodings with learnable position
embeddings in the LogSparse Transformer. In
2021, Wu et al, (2021) introduced the
Autoformer model, which is a self-correlation
decomposition  Transformer for long-term
forecasting. Although sparse attention
mechanisms address the quadratic complexity
issue, they limit the utilization of information.
Furthermore, due to the complex temporal
patterns in long-term predictions, self-attention
mechanisms struggle to capture reliable
dependencies. Therefore, Autoformer was
designed with a deep decomposition
architecture, which integrates time series
decomposition into the Transformer model for the
first time. This architecture includes sequence
decomposition units, self-correlation

mechanisms, and corresponding encoder-

decoder components.

2 EVALUATION METRICS AND
DATASETS FOR TIME SERIES

FORECASTING

2.1 Evaluation Metrics for Time Series
Forecasting

Evaluation metrics are tools used to assess and
analyze the performance of time series
forecasting models, serving as key criteria for
measuring model performance. Common
evaluation metrics for time series forecasting
include:

Mean Squared Error (MSE): This measures the
average squared difference between predicted
and actual values, reflecting the overall error
between the predictions and actual outcomes. It
is calculated as follows:

N L,
MSE <y,y>=ﬁg(yi—yi)2 (1)

142



Chen et al.; J. Basic Appl. Res. Int., vol. 30, no. 6, pp. 140-157, 2024; Article no.JOBARI.12619

Root Mean Squared Error (RMSE): This is the
square root of MSE, assigning higher weights to
larger errors and emphasizing the stability of the
prediction results. It is calculated as follows:

N
RMSE  (y, )= |[=3(y; - ¥,)° @)
ni=1

Mean Absolute Error (MAE): This represents
the mean absolute difference between predicted
and actual values, reducing the influence of
outliers. It is calculated as follows:

o 12 .
MAE (yfy)zﬁéq Yi—Yi |) 3

Mean Absolute Percentage Error (MAPE): This
metric considers the relative magnitude of the
actual values, avoiding the cancellation effect of
positive and negative errors. It is calculated as
follows:

100% 1 |y. — .
MAPE (y,§)=-—— Y @)
vy, |
Symmetric Mean Absolute Percentage

Error (SMAPE): This is a modification of MAPE
that avoids excessively large values when the
actual values are very small. It is calculated as
follows:

100% »n

‘yi_yi

SMAPE (y,§) = ®)
P Ay Dr2
Coefficient of Determination (R?): Also
known as the goodness of fit, this metric

divides the explained variance by the
total variance to measure the proportion of
variance in the dependent variable explained by
the independent variables. It is calculated as
follows:

10
7Z(yi_§,i)2

RACy, ) =1- 02 -0 ®
+ _*_2 ar
ni§1(yi yi)

In the formulas (1) to (6) mentioned above, Y is

the true value, Y is the predicted value, Y is the
mean of ¥, and Var is the variance.

Except for R? , all the evaluation metrics
mentioned above are better when their values
are smaller. The choice of evaluation metric
depends on the specific situation. Typically, a
combination of multiple metrics is used to
comprehensively analyze the model,
enabling deeper insights. Due to the differences

in the characteristics and  application
focus of Recurrent Neural Network (RNN)
models and Transformer models when

handling time series data, researchers prioritize
different metrics when evaluating algorithm
performance.

RNN models, with their memory capability, excel
at capturing long-term dependencies in time
series. Consequently, evaluation metrics for
RNNs often emphasize the ability to model the
overall structure of the time series and
adaptability to various tasks. Researchers may
use a diverse range of evaluation metrics to
thoroughly assess the performance of these
algorithms. On the other hand, Transformer

models, with their self-attention mechanism
allowing for parallel computation, are more
efficient and focus heavily on predictive

accuracy. As such, researchers commonly use
MAE (Mean Absolute Error) and MSE (Mean
Squared Error) to measure the performance of
Transformers.

2.2 Datasets
22.1ETT

The ETT dataset, provided by the State Grid
Corporation of China, consists of minute-level
recordings of transformer oil temperatures from
two counties in the same province during 2016—
2018. Each dataset contains 1,051,200 data
points. To explore long-term  prediction
granularity, the dataset was divided into
subsets based on sampling intervals of 15
minutes and 1 hour, resulting in four subsets:
ETTm1, ETTm2, ETThl, and ETTh2. These
subsets contain 69,680 and 17,420 data points,
respectively. Each data point includes seven
features, comprising the target variable (oil
temperature) and six types of power load
features.

2.2.2 ECL

ECL (Electricity Consuming Load): Electricity
Consumption Load dataset from 2012—-2014.

143



Chen et al.; J. Basic Appl. Res. Int., vol. 30, no. 6, pp. 140-157, 2024; Article no.JOBARI.12619

2.2.3 Traffic

Traffic: Traffic dataset from  California's
Department of Transportation (2015-2016).

2.2.4 Weather

Weather: The weather dataset, provided by the
meteorological station of the Max Planck Institute
for Biogeochemistry, records 21 meteorological
indicators such as air pressure, temperature, and
humidity collected every 10 minutes from 2020 to
2021.

2.2.51LI

ILI: The influenza dataset, provided by the
Centers for Disease Control and Prevention in
the United States, records the ratio of influenza
like disease patients to the total number of
patients per week from 2002 to 2021.

226TE

Tennessee Eastman (TE) is a representative
chemical process proposed by an American
chemical company, consisting of a gas-liquid
separator, a circulating compressor, a stripper, a
condenser, a reactor, and other components.
The TE chemical process can simulate 21 types
of faults in industrial production processes.
These faults are mainly divided into 6 types,

including constant position, sticking, step,
random variable, slow drift, and five unknown
faults. The variable parameters of this process
include 41 measured variables (XMEAS (1) -
XMEAS (41)) and 12 manipulated variables
(XMV (1) - XMV (12)), for a total of 53 observed
variables.

3 TIME SERIES PREDICTION MODEL
BASED ON DEEP LEARNING

3.1 RNN

The RNN model consists of the following three
main components:

(1) Input Layer: Receives input data and
passes it to the hidden layer. The input
includes not only static data but also
historical information from the sequence.

(2) Hidden Layer: The core component that
captures temporal dependencies. The
output of the hidden layer depends on both
the current input and the hidden state from
the previous timestep.

(3) Output Layer: Generates the final
prediction based on the output of the
hidden layer.

The structure of the RNN is illustrated in the
diagram below:

0;

hees w v
:

™~

Fig. 1. RNN structure diagram
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The diagram shows the basic structure of an
RNN, where O; represents the output information,
h, represents the hidden layer output at the
current timestep, h,_, represents the hidden layer
output from the previous timestep, and X
represents the current input. Functions f, and
f, are activation functions, while  ,y ,v

represent weight matrices. RNNs work by
continuously cycling the same neuron over time.
The calculation for the current timestep is given

by:

h, = f,(Ux, +Wh, , +b) @)

o, = f,(Vh, +c¢) (8)

The working principle of RNNs can be
summarized in the following steps: At each
timestep, the RNN unit receives the input X4 for

the current timestep and the hidden state h_,
from the previous timestep. Based on these, the
hidden layer computes a new state h, using a

nonlinear function (such as Tanh or ReLU). The

®

output layer then generates the final output O,

using another weight matrix and activation
function.

Although RNNs are effective for processing
sequential data, they suffer from issues like
vanishing and exploding gradients. For long
sequences, the gradients may become very
small (vanish) or excessively large (explode) due
to repeated multiplication. To address these
problems, variants of RNNs, such as Long Short-
Term Memory (LSTM) networks and Gated
Recurrent Units (GRU), have been developed.

3.2 Long Short-Term Memory (LSTM)

LSTM is a specialized RNN architecture
proposed by Hochreiter and Schmidhuber in
1997. It was designed to overcome the gradient
vanishing and exploding problems encountered
in standard RNNs when handling long
sequences. The core of an LSTM is its
sophisticated gating mechanism, which controls
the flow of information in and out of the unit. A
typical LSTM unit comprises the following
components: forget gate, input gate, cell state,
and output gate. Below is its structure diagram:

®
1 f

T\

i I\
X ®
tanh
X &)
o] [a] [o]
—
g

2 &)

|
&

Fig. 2. LSTM structure diagram

3.2.1 Forget Gate

In an LSTM, the first step is determining which information should be filtered out from the cell state by
the forget gate. This operation is achieved through the forget gate's structure. The forget gate reads
the previous outputh,_, and the current input x, , applies a Sigmoid nonlinear transformation, and

outputs a vector f, . Each value in this vector ranges from 0 to 1, where 1 indicates complete retention
and 0 indicates complete discard. This vector is then multiplied element-wise with the cell statec,_,

.For example, in a language model, the cell state may encode the gender information of the subject in
the current sentence, ensuring the correct pronoun is selected. When a new subject is identified, the
forget gate removes the prior subject's gender information to make room for the new information.
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Fig. 3. Forgetting gate structure diagram

The mathematical formula for the forget gate is
as follows:

fo=oW,[h_,x]+b,) 9)

here (w, )and (b, ) are the weight matrix and bias
vector, (h_,) is the previous hidden state,(x,) is

the current input, and <

activation function.

is the Sigmoid

3.2.2 Input gate

The information update mechanism in Long
Short-Term Memory (LSTM) networks involves
the following two steps to determine how new
information is stored in the cell state:

he

Ty

1)

()

Input Gate activation function. This is a
layer composed of a sigmoid activation
function that determines which values will
be updated to the cellular state. This layer
outputs a vector between 0 and 1, where
each element corresponds to the updated
weight of the corresponding element in the
candidate cell state.

Generation of candidate cell states. This
layer, formed by a tanh activation function,
creates a vector of potential new
information containing values that might be
integrated into the current cell state. This
newly generated vector is then multiplied
element-wise by the output of the input
gate to determine the actual values added
to the cell state.

Fig. 4. Input door structure diagram
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The mathematical expressions for these two steps are as follows:

i, =oW[h_,,x]+b) (10)

C, = tanh( W_[h,_,, % ]1+b,) (11)

here (Wi )and (b)), (Y. )and (b,) are the parameter matrices and bias vectors, (h,) is the hidden

state from the previous timestep, ( Xt) is the current input, © and tanh are activation functions.

The next step updates the cell state C, by combining the information to be forgotten and the newly
added information:

Ci— (;

— >

Fig. 5. Update cell structure diagram

LSTM cells need to multiply the previous state C. with f,, discard the information that needs to be
discarded, and then add i, *C, . This is the new output stateC,.

3.2.3 Output gate

h( A
Eantd
04 e
h{*l m h’

h,

Fig. 6. Output Gate Structure Diagram

The mathematical formula for the output gate is as follows:

0, =oW,[h_;, X ]+b;) (12)
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h, = o, *tanh(C,)

(13)

here (w,)and (b, ) are the parameter matrices and bias vectors, (h,_;) is the previous timestep's

hidden state, ( x, ) is the current input, and @ is the sigmoid activation function.

3.3 Gated Recurrent Units (GRU)

GRU is a simplified variant of LSTM that retains the gating mechanisms (update and reset gates) to
control the flow of information while omitting the separate memory cell. GRUs have fewer parameters
than LSTMs, resulting in higher computational efficiency and, in some cases, similar or better

performance. The core components of GRU include:

Tt

Fig. 7. GRU structure diagram

3.3.1 Update gate

The update gate determines how much of the
previous timestep's hidden state should be
retained in the current hidden state. It outputs
values between 0 and 1, where higher values
indicate greater retention of past information and
lower values suggest reliance on current input.
The formula is:

z, =oc(W,[h,_,,x]+Db,) (24)

here (W,) and (b,) are the parameter matrices
and bias vectors,( ;) is the previous hidden

state, (X:) is the current input, and o is the
sigmoid activation function.

3.3.2 Reset gate

The reset gate determines the extent to which
the previous hidden state influences the
computation of the candidate hidden state. When
the reset gate output is close to 0, most of the
previous information is ignored; when it is close

to 1, more past information is retained. The
formula is:

r=oW,[h_;,x]+b) (15)

here (W, )and(b,) are the parameter matrices and
bias vectors.

At each time step, the GRU unit processes
information through the following steps:

(1) Calculate update and reset gates

According to the above formula, calculate the

update gates (Z;) and (I;) respectively, and the

outputs of these gates will control the update of
hidden states and the degree of preservation of
historical information.

(2) Calculate candidate hidden states
GRU uses reset gates to control the degree of

dependence on previously hidden states and
calculate candidate hidden states.
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The calculation formula for candidate hidden
states is:

h, = tanh( W[r,h_,, x.]+b) (16)

Among them, (I * hH) represents combining

the hidden state of the previous time step (hH)

with the reset gate (i) to control its degree of

influence, and (W ) and (b) are the parameter
matrix and bias.

(3) Update Hidden State

The final step is to use the update gate (Zi) to
calculate the current hidden state (h,):

h =@-2z)*h_ +2 *h, a7
Here, @-z)=h, controls the retention of past

information, and Z,*h, introduces new

information. This formula ensures that the current
hidden state incorporates both historical and new
information effectively.

3.4 Bi-LSTM Model

The Bi-LSTM (Bidirectional Long Short-Term
Memory) network is an improved version of the
LSTM network. It combines two LSTMs: one
processes the sequence from the beginning to
the end, while the other processes it in reverse,
from the end to the beginning. This architecture
excels in several tasks compared to standard
LSTM networks. Bi-LSTM is a time-recurrent
neural network that stacks forward and backward
LSTM layers together. The output is determined
by the hidden states of these two LSTM layers.
Bi-LSTM combines the traditional forward and
backward time sequences, leveraging LSTM's
sensitivity to sequence order to construct a
bidirectional network. The concatenated vector of
outputs from the forward and backward
processes provides the complete hidden
representation of Bi-LSTM, as shown below:

ht = htf ® htb (18)

Here, h' is the output from the forward LSTM

layer, and h’is the output from the backward

LSTM layer. These outputs are combined using
element-wise summation. The internal structure
of Bi-LSTM cells is identical to that of standard
LSTMs and is thus not elaborated further.

LSTM g

LSTM
LSTM

&)

Output
Activation [ /tanh
Layer
Forward
g LSTM g LSTM g LSTM
Backward
| IV ol
Input

Fig. 8. Bi LSTM Structure Diagram
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3.5 Transformer Model

The Transformer is a deep learning architecture
primarily used for natural language processing
(NLP) and other sequence-to-sequence
tasks. It was first proposed by Vaswani et al.
in 2017. The key innovation of the
Transformer architecture is the self-attention
mechanism, which allows it to excel in
processing sequential data. The Transformer
employs a self-attention-based encoder-decoder
structure.

(1) Encoder: Composed of stacked identical
layers, each layer includes two sub-layers: a
multi-head self-attention mechanism and a
position-wise  fully connected feedforward
network. Normalization layers and residual
connections are applied to the input and output
of the multi-head self-attention module.

(2) Decoder: The decoder generates the output
sequence using the representation produced by
the encoder. Similar to the encoder, the decoder

is composed of stacked identical layers. Each
decoder layer adds a third sub-layer, which
performs multi-head attention over the encoder's
output. Residual connections and normalization
layers are applied to each sub-layer. The
following is the architecture diagram of
Transformer.

3.5.1 Self-Attention mechanism

The self-attention mechanism is the core concept
of the Transformer. It enables the model to
consider all positions in the input sequence
simultaneously, unlike recurrent or convolutional
neural networks that process sequentially. The
self-attention  mechanism  assigns  varying
attention weights to different parts of the input
sequence, thereby capturing semantic
relationships more effectively. The mathematical
expression for self-attention is as follows:

Attention( Q,K,V) = softmax( QK W (19)

Jd,
Output Probabilities

| Softmax_|

" [AddENom - |

Feed
/ \ Forward
[ Add&Norm | Add&Norm
Feed Multi-Head Nx

Nx Forward Attention

Add&Norm Add&Norm

Multi-Head Multi-Head

Attention Attention
\ / \ L I / st
Positional 3 ( ) ositiona
Encoding K Encoding

Embedding

Inputs

Output

Embedding

Outputs(shifted right)

Fig. 9. Transformer architecture diagram
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Firstly, extract the query vector (Q), key vector
(K), and value vector (v ) from the embedded
vector. Next, determine a score for each vector:
the score is equal toQeK . Score normalization

(division\/a) is used for gradient stability. Next,
use the softmax activation function to process
the scores. The weighted score of each input
vector is obtained by taking the softmax dot
product value. Sum up to produce the final result.

3.5.2 Multi-head attention mechanism

The Transformer model employs a multi-head
self-attention mechanism to enhance its ability to
capture dependencies among elements in a
sequence. The core principle of the attention
mechanism is that each token in a sequence can
aggregate information from other tokens,
enabling the model to better understand
contextual relationships. This is achieved by
mapping a query, a set of key-value pairs, and
an output (each represented as vectors) into an
attention function. The output is computed as a
weighted sum of the values, where the weights
are determined by a compatibility function
between the query and the corresponding keys.
Multi-head attention is equivalent to combining
multiple scaled dot-product attention
mechanisms. It effectively parallelizes the
processing of the query (Q), key (K ), and value
(Vv ) vectors, resulting in a final output that
integrates information from different attention
heads.

3.5.3 Positional encoding

Since the Transformer model does not rely on
recursion or convolution, it requires a method
to capture the relative or absolute position of
tokens within a sequence to effectively utilize
sequential order. Positional encoding is
introduced at the input level of the encoder and
decoder stacks. These positional encodings are
added to the input embeddings, sharing the
same dimensional space. They are calculated
using sine and cosine functions at different
frequencies as follows:

(sin{tm},i =2k
10000
PE(t)i :J

(20)
L(:os{

100007 },i =2k+1

Here, t is the position in the sequence,d is the
vector dimension, and k is the natural number
used for indexing. By mapping each position to a
uniqgue frequency using sine and cosine
functions, and converting the frequency into an
element in the embedding vector using the
corresponding sine and cosine functions, the
model can capture the position information when
processing the input sequence.

3.6 Comparison of Deep Learning Models

Datasets: This study conducted experiments
using the ETTm2, Electricity, Traffic, and
Weather datasets. Other datasets were excluded
due to insufficient periodicity, seasonality, or data
volume.

Experiment Details: To ensure consistency, all
models used an input sequence length of 24 and
a prediction length of 1. For the ETTm2,
Electricity, and Weather datasets, the first
variable was selected for prediction, representing
the high-useful load of an electric transformer oil
temperature, a user's hourly electricity
consumption, and atmospheric  pressure,
respectively. For the Traffic dataset, the third
variable was selected, representing the hourly
road occupancy rate recorded by a sensor. All
models were trained using the Adam optimizer,
with MSE (Mean Squared Error) and MAE (Mean
Absolute Error) as evaluation metrics. PyTorch
was used for implementation.

Fig. 10 shows the prediction curves of four
models on the ETTm2 dataset, where the
horizontal axis represents the dataset, the
vertical axis represents the numerical size, the
blue curve represents the actual data value, and
the red curve represents the predicted value.

Fig. 11 The prediction curves of four models on
the ECL dataset, where the horizontal axis
represents the dataset, the vertical axis
represents the numerical size, the blue curve
represents the actual data value, and the red
curve represents the predicted value.

Fig. 12 The prediction curves of four models on
the Weather dataset, where the horizontal axis
represents the number of test sets, the vertical
axis represents the numerical size, the blue
curve represents the actual data value, and the
red curve represents the predicted value.
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Fig. 12. The prediction curves of four models on the Weather dataset

— pred — pred
—— labels 0.30 — labels
0.25
0.20
0.15
0.10
0.05 M
0.00
0 200 460 660 800 0 200 400 600 800
(a) RNN model (b) LSTM model
— pred —— pred
— labels 0.30 - labels
0.25
0.20
0.15
0.10
0.05
0.00
o 200 400 600 800 0 200 400 600 800
(c) GRU model (d) Transformer model
— pred
030 — labels
0.25
0.20
0.15
0.10
0.05
0.00
l‘) 2(;0 4(;0 660 800

(e) LSTM-RNN model

Fig. 13. The prediction curves of four models on the Traffic dataset
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Table 1. Comparison of univariate prediction performance of four deep learning models

Model Evaluating indicator ETTm2 Electricity Weather Traffic
RNN MSE 3.459 21.603 0.007 0.00112
MAE 1.404 2.014 0.060 0.021
LSTM MSE 3.480 19.821 0.008 0.00120
MAE 1.414 1.848 0.066 0.020
GRU MSE 3.454 19.524 0.007 0.00110
MAE 1.402 1.889 0.062 0.021
Transformer MSE 3.418 19.541 0.827 0.00122
MAE 1.399 2.025 0.341 0.021
LSTM-RNN MSE 3.454 21.583 0.007 0.00125
MAE 1.404 1.941 0.062 0.021
Fig. 13 The prediction curves of four models on learning techniques can accurately identify

the Traffic dataset, where the horizontal axis
represents the number of test sets, the vertical
axis represents the numerical size, the blue
curve represents the actual data value, and the
red curve represents the predicted value.

We compare and analyze the performance of the
four deep learning models mentioned above (as
shown in Table 1).

The experimental data of various models listed in
Table 1 were analyzed and summarized in depth,
and the conclusion is as follows: the Transformer
model achieved the best performance on the
ETTm2 dataset, with minimum MAE and MSE
values. The LSTM model achieved the minimum
MAE on the Electricity and Traffic datasets, i.e.
the minimum tie error. The GRU model achieved
the minimum mean square error (MSE) on the
Electricity and Traffic datasets. The RNN model
achieved the best performance on the Weather
dataset, with minimum MAE and MSE values.
The LSTM-RNN model generally outperforms the
standard RNN and also shows better results than
the ordinary LSTM model on the ETTm2 and
Weather datasets. Overall, in most cases, the
combination of the two results in a certain
performance improvement.

4. SUMMARY AND OUTLOOK
4.1 Summary

Although  traditional  statistical =~ modeling
techniques incorporate structural assumptions
into models, making them easier to understand,
they often require independent modeling of time
series data in modern predictive applications.
This approach significantly increases labor and
computational costs. Therefore, it is necessary to
find more efficient techniques capable of
simultaneously handling varying degrees of
relationships among two or more variables. Deep

complex patterns within and across time series
with  relatively lower human  resource
requirements. However, these models rely on
fewer structural assumptions, making them more
challenging to interpret and often requiring larger
training datasets to learn accurate models.
Additionally, since different sample types exhibit
distinct distribution patterns, a single fixed model
cannot be universally applied, necessitating the
use of multiple regression algorithms. This has
led to innovative forecasting methods that
combine traditional statistical models with deep
learning. These hybrid approaches have
significantly addressed the limitations of both
technigues. In recent years, many deep neural
network models for time series analysis have
been proposed. These methods not only enable
models to automatically extract features and
learn complex temporal patterns but also apply
assumptions like temporal smoothing, enhancing
model interpretability. As research on neural
network technologies continues to advance,
deep learning has become one of the hottest
research topics in machine vision. Based on a
review of literature on time series forecasting and
deep learning, this paper primarily explores four
deep learning models for time series forecasting.

4.2 Outlook

Deep learning has achieved significant results in
the field of time series prediction, and the future
prospects are even more exciting. With the
continuous advancement of technology, we have
reason to believe that deep learning will play a

more important role in temporal prediction,
bringing revolutionary changes to various
industries.

Firstly, at the algorithmic level, deep learning will
be further optimized and improved. At present,
models such as RNN, LSTM, and GRU have
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achieved good results in time series prediction.
In the future, new deep learning models such as
Transformers and graph neural networks are
expected to better handle time-series data,
improve prediction accuracy and stability.

Secondly, at the application level, deep learning
will play an important role in more fields. For
example, in the financial field, deep learning can
be wused for stock price prediction, risk
management, etc; In the field of energy, it can be
used for power load forecasting, new energy
generation forecasting, etc; In the field of
transportation, it can be used for traffic flow
prediction, flight delay prediction, etc. With the
continuous accumulation of data, the application
of deep learning in time series prediction will
become more widespread.

In addition, cross domain fusion of deep learning
in temporal prediction will also become a
development trend. For example, combining
deep learning with statistics, chaos theory, etc. is
expected to further improve the generalization
ability and robustness of prediction models. At
the same time, by combining domain knowledge,
deep learning can achieve finer grained temporal
prediction, providing decision-makers with more
targeted recommendations.

Finally, with the continuous improvement of
computing power, the real-time performance of
deep learning in temporal prediction will be
guaranteed. In the future, real-time prediction will
become possible, providing more accurate and
real-time decision support for various industries.

5. CONCLUSION

This paper presents a systematic review of time
series forecasting methods based on deep
learning. It first introduces the background,
significance, and various methods of time series
forecasting. Then, it provides a detailed overview
of representative deep learning models in this
domain, including RNN, LSTM, GRU, and
Transformer models. Subsequently, it conducts
comparative prediction experiments on public
datasets and evaluates the performance of these
models. Finally, it explores future research
directions for deep learning in time series
forecasting, offering valuable insights for further
advancements in this field.
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