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Abstract 

 
In this paper, the study intends to mitigate the missing problem in the context of univariate ARMA time 

series models. Our main objective of this paper was to derive imputation estimators for ARMA models under 

the student’s-t distribution assumptions and evaluate their imputation performance. The study also utilized 

the method of optimal interpolation criterion of missing values to build the novel imputation estimators for 

ARMA models. A data set of 1000 samples were generated using statistical R software. One hundred (100) 

points of missing values ware created within the generated sample data at a random mechanism. The study 

carried out an imputation of missing values using the developed estimators for ARMA (1,1) and ARMA (1,2) 

processes. In this study, it was evident that the estimators ARMA (1,2) did imputed the missing values better 

than those of ARMA (1,1) process. This was indicated by lower values of the calculated metrics of ARMA 

(1,2) compared to those of ARMA (1,1). Besides the development of the imputation estimators, the study did 

a comparison of the derived imputation estimators of time series with the convectional imputation techniques 
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of missing values. They included K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN) and 

Kalman filters imputations. The results obtained from the calculated metrics, compared the results of the 

simulation study that the ANN, KNN and the Kalman filters were better in imputing missing values in time 

series data. The proposed estimated models of ARMA also did compete well with the convectional 

techniques used in this study. The models that the study came up with can be of importance to data scientists, 

researchers in refilling missing data in time series contexts. 
 

  

Keywords: Autoregressive moving average model; artificial neural networks; imputation; Kalman filters; 

missing values; student t distribution; optimal linear interpolation. 
 

1 Introduction 
 

An autoregressive moving average or (ARMA) model, is a process of a linear combination of an autoregressive 

or AR, a moving average or MA and an error or an innovation noise. The (ARMA) process is an important 

stationary time series model that plays a crucial role in the modeling of time series data. In most cases, the errors’ 

noises for the general (ARMA) models are always assumed to take normal distribution its modelling (Brockwell 

& Davis, 2016).  

 

Generally, most time series models assume normality in their estimation and predictions. Normality is always 

taken by these models because of its simplicity and availability of modeling techniques that can handle 

normality more comfortably (Vellido, 2005; McLachlan & Peel, 2000). However, there are cases where some 

practical scenarios may not capture normality. Utilizing normality assumptions to model such cases where 

normality is not obeyed might not work and hard to handle (Zhou et al., 2020).  

 

Asymmetry and non-normality is an alternative way of handling data that do not obey normality. Asymmetric 

distribution offers more reliable and robust results when applied to real phenomena with asymmetric, non-

normality, skewness and flat tails characteristics (Ahsanullah et al., 2014). The most utilized distributions to 

capture asymmetry, flat and long tails, are; Student-t distribution, Normal inverse Gaussian and generalized 

error distribution just to mention a few. The characteristics of these distributions can be adjusted to adapt data 

that displays, heavy tails, skewness, non-normality and asymmetric features. 

 

During modelling of time series data, researchers normally encounter with missing data. Missing values occurs 

when a value or data values in a given variable are not given for many reasons. Missing values masks and veils 

trends and patterns in time series analysis. Missing values has far reaching effects on analysis and forecasting 

associated to trends and patterns for time series data (Khan & Hoque, 2020; Kwak & Kim, 2017). Time series 

analysis does experience this challenge quite often. Therefore, many researchers, have given rise to numerous 

ways of recouping missing data in various disciplines, including time series.  

 

One of the ways to deals with missing values is through the deletion of missing parts. The deletion is a way of 

eliminating missing sets or the variables containing missing values by simply deleting the missing data. 

However, deletion of missing values has a major setback of eliminating vital information, which adversely 

impact the prediction, forecasts and eventually interfere with the inference on vital information for decision 

making (Almeida et al., 2024; Gotal Dmitrović et al., 2016). 

 

Imputation is the only way out to mitigate missing value problems. Imputation is an important step that should 

not be skipped in any data analysis process. Imputation enhances cleanliness in data for further handling and 

processing. A sufficient data imputation algorithm must improve on the data productivity, data analysis, data 

visualization and data investigations (Vellido, 2005). 

 

During imputation of missing data, there are various pertinent issues that need to be taken into consideration 

ensure adequate restoration of missing data. One of the important characteristics that any data should portray 

during analysis is normality. In practice, normality might not be realized for various reason. To cope up with 

asymmetry and non-normality, data can be transformed to make it capture normality. However, this step has 

been dismissed owing to the fact that vital statistical properties of the transformed data may be destroyed.  Due 

to this reason, asymmetric distributions have been proven to capture and work well under non-normality, 

asymmetry and skewness cases (Neethling et al., 2020). 
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Time series models like autoregressive moving average (ARMA) models were design in such a way that they 

only work with complete data. If missing data occurs during modeling using the time series models, then 

modeling might be hampered. This way, researches has been carried out to develop statistical imputation 

algorithms and estimators through robust statistical estimation techniques like Likelihood Estimation (Aydin & 

Şenoğlu, 2018), Least Squares Method (Bondona & Bahamonde, 2012), Expectation Maximization (Dempster 

et al., 1977), and Interpolation. 

 

1.1 Autoregressive Moving Average Model 
 

The Autoregressive moving average (ARMA) model is a time series model that is widely used for analyzing 

time series data. The general form of ARMA (p, q) is given by; 

 

𝑘𝑡 = ∑ 𝜃𝑖𝑘𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜑𝑗𝑒𝑡−𝑗

𝑞

𝑗=1

+ 𝑒𝑡 

(1) 
 

Where 𝑒𝑡 in the literature is assumed to be Gaussian white noise with zero mean and a constant variance 𝛿𝛼
2. In 

this context, we will have 𝑒𝑡 assuming the Student’s t distribution. It is taken that this process should be causal-

stationary and invertible so that the roots of the process lie outside the unit circle. 
 

Time series models that have considered the imputation of missing values under Gaussian or normal 

assumptions are numerous in the literature. For instance, author (Nassiuma, 1994) did propose an algorithm for 

filling missing values for ARMA time series model when their innovations consider a stable Gaussian 

assumption. Authors (Ding et al., 2010; Voloshko & Kharin, 2011) considered the missing value problem under 

the AR processes of time series models. Their studies focused on letting their AR error terms assume Gaussian 

approach. Author (Owili et al., 2015) considered imputation of missing values with pure bilinear time series 

models. The innovations for the series in their study, assumed normal distribution. 
 

Time series models that have considered imputation of missing values under asymmetric assumptions include 

((Liu et al., 2019; Zhou et al., 2020), their study considered a vector autoregressive (VAR) time series, to model 

data with missing data under Multivariate heavy tailed, Student t distribution approach.  
 

The study made an observation, that there is a gap in imputing missing values under time series analysis, 

especially when their innovations follow asymmetric distributions. This is the gap that the study will bridge and 

have a contribution to missing values imputation problems. The objective of this paper is to develop some 

imputation estimators for ARMA time series modeling under Student t-distribution error assumptions via 

optimal linear interpolation. 
 

1.2 The Student t distribution 
 

The Student t distribution is a continuous distribution that belongs to the family of continuous probability 

distributions. It has wide range of applications ranging from statistics and other genres of sciences. This 

distribution has been used in capturing heavy tails, asymmetry and non-normality. Such attributes of heavy tails 

and asymmetry are mostly displayed by economic data, business data and finance datasets (Kumari & Tan, 2013; 

Dinga et al., 2023).  

 

The probability distribution function for the standard student t is given by; 

 

𝑓(𝑥) =
1

√𝑣𝛽 (
𝑣
2

,
1
2
)
(1 +

𝑥2

𝑣
)

−(
1+𝑣
2

)

 

−∞ < 𝑥 < ∞,where 𝑣 > 0                                         (2) 

 

 

Some known characteristics of the Student t distribution on mean, variance, skewness and kurtosis are given by, 
 

i. Mean (𝛼1) = E(x) = 0 
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ii. Variance  

    Var (x) = 𝛽2 =
𝑣

𝑣−2
, 𝑣 > 2 

iii. Skewness  

𝛾1(𝑥) =
𝛽3

𝛽2

3
2

= 0 

iv. Kurtosis  

𝛾2(𝑥) =
𝛽3

𝛽2
2 =

3(𝑣 − 2)

𝑣 − 4
, 𝑣 > 4 

 

A challenge arises when utilizing this distribution to capture asymmetry and heavy tail-ness in presence of 

missing data. This is because the student t-distribution is crafted to be modeled and utilized under a case when 

the all data is present. 

 

The student t distribution is one of the most commonly used heavy tailed distribution in modellings. The authors 

(Owili et al., 2015; Dinga et al., 2023) have considered their time series errors following student’s t assumptions 

for missing value estimations.  

 

2 Methodology 
 

This section provides an overview on what has been done on the state-of-the-art techniques (machine learning 

techniques) of missing values imputation including the proposed optimal interpolation criterion for estimation of 

missing values in time series analysis. The imputation techniques will be utilized in the next sections in 

conducting comparisons of imputation of the missing values. 

 

2.1 Artificial Neural Networks (ANNs) Technique 
 

The artificial neural networks (ANNs) are machine learning computation models that imitate the biological 

brain’s neurons. ANNs has been utilized in several applications including the speech recognition, image 

recognition, pattern recognition machine learning including missing values and data predictions and forecasting 

(Safa et al., 2021; Faru et al., 2023).  The neural networks consist of multiple layers of hidden interconnections 

of codes. The outputs of each layer is fed into the adjacent layers of codes. The layers in the networks are 

arranged in a manner that they are fed forward and not backwards as shown in the following Fig. 1.  The hidden 

layers of ANNs are sandwiched between the input and the output layers that carry out the calculations of the 

inputted data. ANNs has been used in estimation of missing data in time series like the authors in (Almeida et 

al., 2024), utilized ANNs to impute missing values for univariate time series case. The authors in (Wei et al., 

2018) did conducted a study on imputation of missing values in multivariate time series case. Their study 

involved the use of modified ANNs models in comparison to other statistical imputation models.  

 

 
 

Fig. 1. ANN Layers 
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2.2 The Kalman Filter Technique 
 

The kalman filter is a set of statistical equations, that can be used in estimation of future, present and past states 

of some given processes. They are typically expressed in the form of a linear difference equation as,  

 

𝜇𝑡 =  𝛼𝑡−1𝛽𝑡−1 +  𝜔𝑡−1𝑈𝑡−1 + 𝜃𝑡−1 
            (3) 

Where:   𝜇𝑡 is the state of the system at time t. 

 𝛼𝑡−1 is the state transition matrix, which describes how the state evolves from time       t- 1 to time t 

𝛼𝑡−1 is the input matrix, which describes how the system responds to inputs 𝑈𝑡−1 

𝑈𝑡−1 is the input to the system at time t-1 

𝜃𝑡−1 is the process noise, which is assumed to be zero-mean and Gaussian  

 

With covariance matrix  𝜔𝑡−1 

 

Kalman filters provides a powerful recursive formula for predicting, racking and forecasting dynamics systems 

using current estimates and observations. Kalman filters has been heavily relied on some applications like signal 

processing, tracking navigations and imputations. The kalman filters can be adjusted accordingly to fit the 

model being required to be modeled. The kalman filter has been applied in imputing missing data or values in 

time series analysis. Author (Adejumo et al., 2021; Owili, 2016, Owili P, 2016) conducted a comparison on the 

imputation of missing values in time series using Kalman filters technique verses other methods of estimating 

missing values. 

 

2.3 K – Nearness Neighbors (KNN) Technique 
 

KNN is a popular imputation machine learning algorithm that utilizes the neighboring values to the missing data 

sets to impute the missing values. Using this algorithm, the most likely value of missing data can be calculated 

using the Euclidean distance of nearest neighbors (Rizvi et al., 2023). The KNN also does the leveraging in the 

similarities between the missing observations. 

 

2.4 Optimal Linear Interpolation Technique 
 

The proposed method was suggested by author Nassiuma (1994). Also, the above mentioned method has been 

utilized by author Owili et al., (2015) for the imputation of missing values under bilinear time series models. For 

the purposes of computation of missing values in autoregressive moving average (ARMA) time series models. 

They explained how the imputation computation is arrived at using the following statements, that; 

 

Suppose an observation 𝑘𝑚 is a missing value out of a set of n-possible observations generated by an ARMA (p, 

q) process. Let the subspace 𝑄𝑚
∗  be the allowable space of a linear estimator of km based on observed values 

𝑘𝑡 , 𝑘𝑡−1, ⋯ 𝑘𝑚−1 that are given by 𝑄𝑚
∗ = 𝑄𝑝{𝑘𝑡: 𝑡 ≤ 𝑛; 𝑡 ≠ 𝑚}. The projection of 𝑘𝑡 on to 𝑄𝑚

∗  denoted as 𝑃𝑆𝑚

𝑘𝑚 

such that the disp {𝐾𝑚 − 𝑃𝑆𝑚

𝐾𝑚} is minimized, that is basically the minimum dispersion of the linear estimator. 

Direct computation of the projection of the 𝐾𝑚  on to 𝑄𝑚
∗  would be complicated since the subspace 𝑄1 =

𝑄𝑃{𝑘𝑚−1, 𝑘𝑚−2, ⋯ } and 𝑄𝑚
∗  are not independent of each other and thus we consider the evaluation of the 

projection on to two disjoint subspace of Qm
∗ . To achieve this, we express Qm

∗  as a direct sum of subspaces Q1 

and another subspace, say Qt such that 𝑄𝑚
∗ = 𝑄1⨁ 𝑄∗. A possible sub-space is 𝑄∗ = 𝑄𝑝{𝑘𝑖 − 𝑘𝑖

𝑡; 𝑖 > 𝑚 + 1}. 

Where 𝑘𝑖
𝑡  is based on the values {𝑘𝑚−1, 𝑘𝑚−2, ⋯ }. The existence of subspaces Q1and Q∗  are shown in the 

following lemma; 

 

Lemma: Suppose 𝑘𝑡 is non-determined stationary process defined on the probability space (Ω, 𝛽, 𝜌). Then the 

subspace 𝑄𝑚
∗  is the direct sum of subspaces 𝑄1 and 𝑄∗ as defined in the above norm. 

 

Proof: Suppose 𝐾∗ ∈ 𝑆𝑚
∗  then 𝐾∗ can be represented as; 
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K∗ = Zn + ∑aiKi = (K + ∑aiKi
t) + ∑ aiKi

t where K ∈ S1                  (4) 
 

So clearly, the two components in the above equation (2) are independent. The best linear estimators for 𝐾𝑚 can 

be evaluated as a projection over the two sub-spaces 𝑆1 and 𝑆∗ Such that the dispersion given by disp (𝐾𝑚 −
𝑃𝐵𝑚

𝐾 ) is minimized so that; 

 

𝐾𝑚
∗ = 𝑃𝑆𝑚

∗
𝐾𝑚 = 𝑃𝑆1

𝐾𝑚 + 𝑃𝑆∗

𝐾𝑚 = 𝐾𝑚 + 𝑃𝑆𝑚
∗

𝐾𝑚                     (5) 
 

When n is assumed to be finite large data, so that the coefficients {𝑎𝑣: 𝑣 ≥ 𝑚 + 1} are estimated such that the 

dispersion error of the estimate is minimized. This is achieved as follows: 
 

We use equations (2) and (3) above to estimate the dispersion, such that the  
 

disp {𝐾𝑚 − 𝑃𝑆𝑚
∗

𝐾𝑚} is minimized i.e.  𝐾𝑚
∗ = 𝑃𝑆𝑚

∗
𝐾𝑚 = 𝑃𝑆1

𝐾𝑚 + 𝑃𝑆∗

𝐾𝑚 = 𝐾𝑚 + 𝑃𝑆𝑚
∗

𝐾𝑚                            (6) 
 

But    𝑃𝑆𝑚
∗

𝐾𝑚 = {∑ 𝜉𝑣
𝑛
𝑣=𝑚+1 (𝐾𝑣 − 𝐾𝑣); 𝑑𝑖𝑠𝑝 (𝐾𝑚 − 𝑃𝑆𝑚

∗
𝐾𝑚)}                  (7) 

 

Squaring both sides and taking the expectations, we obtain the dispersion error as; 
 

disp Xm = E(Km − Km
∗ )  = {(𝐾𝑚 − 𝐾𝑚) − ∑ 𝜉𝑣(𝐾𝑣 − 𝐾𝑚)

𝑛

𝑣=𝑚+1

}

2

 

(8)  

 

By minimizing the dispersion with respect to the coefficients (differentiating with respect to 𝜉𝑣 and solving for 

𝜉𝑣), we should obtain the coefficients 𝜉𝑣, for 𝑣 ≥ 𝑚 + 1, which are used in estimating the missing values. The 

missing value at point 𝑘𝑣 is estimated as; 
 

𝐾𝑚
∗ = 𝑘̂𝑚 + ∑ 𝜉𝑣(𝑘𝑣 − 𝑘̂𝑣)

𝑛

𝑣=𝑚+1

 

             (9) 

 

3 Results and Discussion 
 

3.1 Derivation of Imputation Estimators for ARMA Process with student’s t errors 
 

Lemma: Suppose 𝑘𝑡 is non-determined stationary process defined on the probability space (Ω, 𝛽, 𝜌). Then the 

subspace 𝑄𝑚
∗  is the direct sum of subspaces 𝑄1 and 𝑄∗ 

 

Theorem 1: The imputation optimal interpolation estimator for ARMA (1,1) process is given by; 

 

𝑘̂𝑚 = 𝜃̂1𝑘𝑡−1 + 𝜑̂1𝑒𝑡−1 + ∑ (𝜃1 + 𝜑1)

𝑛

𝑣=𝑚+1

  −
(𝜃1 + 𝜑1)

2(𝑣−𝑚)

2
(

𝑛

𝑛 − 2
)

𝑣−1
(𝑘𝑣 − 𝑘̂𝑣) 

                     (10) 

Proof: The stationary ARMA (1,1) process is given by, 

 

               kt = θ1kt−1 + φ1Ԑt−1 + Ԑt where Ԑt~𝑡(0,1)                           (11) 

 

Getting the recursive form of equation (10) above, the it can be obtained as, 

 

km = ∑{∏(θ1 + φ1)Ԑt−1 + Ԑt

i

j=1

}

∞

i=1

 

           (12) 

Obtaining the r-step future predicted form of the above equation (12), we write it as, 
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km+r = ∑ {∏(θ1 + φ1)Ԑt+r−1 + Ԑt+r

i

j=1

}

∞

i=1

 

                     (13) 

Or if we set v = r + h, then the above equation (13) can be rewritten as, 

 

kv = ∑{∏(θ1 + φ1)Ԑv−1 + Ԑv

i

j=1

}

∞

i=1

 

                                (14) 

 

Obtaining r-step future predicted error of the above equation (14), which can be expressed as, 

 

kv − k̂v = ∑{∏(θ1 + φ1)Ԑv−1 + Ԑv

i

j=1

}

r−1

i=1

 

                                                                                (15) 

 

From the above statement the dispersion is given as, 

 

 disp km = E(km − k̂m)
2

= E {km − k̂m − ∑ ξv(kv − k̂v)

n

v=m+1

}

2

 

                        (16) 

 

If the second part of equation (16) above is simplified, then it can be obtained that the dispersion is given as, 

 

disp km = E(km − k̂m)
2
− 2E { ∑ ξv

n

v=m+1

(km − k̂m)(kv − k̂v)} + { ∑ ξv

n

v=m+1

(kv − k̂v)}

2

 

                        (17) 

 

Substituting equation (15) into equation (17) above, the dispersion can be given as; 

 

disp km = E(km − k̂m)
2
− 2E{(Ԑm) (∑{∏(θ1 + φ1)Ԑv−1 + Ԑv

i

j=1

}

r−1

i=1

)} 

+E{ ∑ ξv

n

v=m+1

(∑ {∏(θ1 + φ1)Ԑv−1 + Ԑv

i

j=1

}

r−1

i=1

)}

2

 

                       (18) 

 

Evaluating the above equation (18) then it can be found that; 

 

The first term to be, 

 

km = E(km − k̂m)
2

= E(Ԑm)2 

 

 

The second term given by, 

 

−2E [(Ԑm) ∑ ξv

n

v=m+1

(∑{∏(θ1 + φ1)Ԑv−1 + Ԑv

i

j=1

}

r−1

i=1

)] 
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Which can be evaluated further to obtain,  

 

−2E

[
 
 
 

ξm+1(θ1 + φ1)Ԑm ∙ Ԑm + ξm+1Ԑm+1

+ξm+2(θ1 + φ1) ∙ (θ1 + φ1)Ԑm+1 ∙ Ԑm + ξm+2Ԑm+2

+ξm+3(θ1 + φ1) ∙ (θ1 + φ1) ∙ (θ1 + φ1)Ԑm+2 ∙ Ԑm

+ξm+3Ԑm+3 + ⋯ ]
 
 
 

  

 

Or        

−2E [

ξm+1(θ1 + φ1)Ԑm
2 + ξm+1Ԑm+1

+ξm+2(θ1 + φ1)
2Ԑm+1 ∙ Ԑm + ξm+2Ԑm+2

+ξm+3(θ1 + φ1)
3 ∙ Ԑm+2 ∙ Ԑm + ξm+3Ԑm+3 + ⋯

] 

 

Which can be simplified further to be, 

 

−2E{ξm+1(θ1 + φ1)Ԑm
2 } 

        

The third term is given by,  

 

+E [ ∑ ξv

n

v=m+1

(∑{∏(θ1 + φ1)Ԑv−1 + Ԑv

i

j=1

}

r−1

i=1

)]

2

 

 

Can be evaluated to be,  
 

+E 

[
 
 
 

ξm+1(θ1 + φ1)Ԑm ∙ Ԑm + ξm+1Ԑm+1

+ξm+2(θ1 + φ1) ∙ (θ1 + φ1)Ԑm+1 ∙ Ԑm + ξm+2Ԑm+2

+ξm+3(θ1 + φ1) ∙ (θ1 + φ1) ∙ (θ1 + φ1)Ԑm+2 ∙ Ԑm

+ ξm+3Ԑm+3 + ⋯ ]
 
 
 
2

     

    

Or 

     +E{

ξm+1
2 (θ1 + φ1)

2Ԑm
2 Ԑm

2 + ξm+1
2 Ԑm+1

2

+ ξm+2
2 (θ1 + φ1)

4Ԑm+1
2 Ԑm

2 + ξm+2
2 Ԑm+2

2

+ ξm+3
2 (θ1 + φ1)

6Ԑm+2
2 Ԑm

2 + ξm+3
2 Ԑm+3

2 + ⋯

}  

   

The above equation of the third term, can be simplified to obtain, 
 

+E [Ԑm
2 ∑ ξv(θ1 + φ1)

2(v−m)

n

v=m+1

Ԑv−1
2 + ∑ ξv

2

n

v=m+1

Ԑv
2] 

   

Putting all terms of the above equation (18) it can be obtained that the equation under the   dispersion is given as; 
 

km = [

(Ԑm)2 − 2E{ξm+1(θ1 + φ1)Ԑm
2 }

+ {Ԑm
2 ∑ ξv(θ1 + φ1)

2(v−m)

n

v=m+1

Ԑv−1
2 + ∑ ξv

2

n

v=m+1

Ԑv
2}

] 

                            (19) 

Substituting for the errors in the above equation (19) using the assumption of the distribution taken, we can have 

the dispersion as; 

 

       disp (x̂m)= ([

n

n−2
− 2 {ξm+1(θ1 + φ1)

n

n−2
} +

n

n−2

∑ ξv(θ1 + φ1)
2(v−m)n

v=m+1 (
n

n−2
)

v−1
+ ∑ ξv

2n
v=m+1 (

n

n−2
)

v

])                               (20) 

 

Differentiating the above equation (20), then we obtain; 
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∂

∂𝜉𝑣

{disp 𝑥̂m} =

(

 
 

(
∂

∂𝜉𝑣

{
n

n − 2
} − 2

∂

∂𝜉𝑣

{ξm+1(θ1 + φ1)
n

n − 2
})

(+
∂

∂𝜉𝑣

{
n

n − 2
∑ ξv(θ1 + φ1)

2(v−m)

n

v=m+1

(
n

n − 2
)

v−1
} +

∂

∂𝜉𝑣

{ ∑ ξv
2

n

v=m+1

(
n

n − 2
)

v
})

)

 
 

 

                  (21) 

Evaluating the above equation (21) under the derivative and equating it to zero we obtain; 

 

−2 {(θ1 + φ1)
n

n−2
} +

n

n−2
(θ1 + φ1)

2(v−m) (
n

n−2
)

v−1
+ 2ξ (

n

n−2
) = 0                                                 (22) 

 

Making 𝜉𝑣 to be the subject of the above equation (22), it can be found that; 

 

𝜉𝑣 = (θ1 + φ1) −
(θ1+φ1)2(v−m)

2
(

n

n−2
)

v−1
                                                   (23) 

 

Substituting the value of  𝜉𝑣  from the above equation (23) into the expression of interpolation given by the 

equation (9), it can be formulated that the optimal linear interpolator for ARMA (1,1) is; 

 

k̂m = θ̂1kt−1 + φ̂1et−1 + ∑ (θ1 + φ1)

𝑛

𝑣=𝑚+1

 −
(θ1 + φ1)

2(v−m)

2
(

n

n − 2
)

v−1
(kv − k̂v) 

                                                                                                                                             (24) 

Theorem 2: The imputation optimal interpolation estimator for ARMA (2, 1) process is given by 

 

𝑘̂t = θ2𝑘̂t−2 + θ1𝑘̂t−1 + φ1Ԑt−1 + ∑
𝜃2

(θ2)
2(v−m) + (θ1 + φ1)

2(v−m) + 1
(kv − k̂v)

𝑛

𝑣=𝑚+1

 

                     (25) 

Proof  

A stationery ARMA (2,1) process is given as 

 

                 kt = θ2kt−2 + θ1kt−1 + φ1Ԑt−1 + Ԑt  Where Ԑt~𝑡(0,1)                                               (26) 

 

The recursive form of the above equation (26) can be given to be; 

 

kt = ∑[∏(𝜃2)

𝑖

𝑗=1

𝜀𝑡−2𝑗]

∞

𝑖=1

+ ∑ [∏(𝜃1 + 𝜑1)

𝑖

𝑗=1

𝜀𝑡−𝑗] + 𝜀𝑡

∞

𝑖=1

 

                      (27) 

 

The r-step future forecast of the above process in the equation (27) can be given by; 

kt+r = ∑[∏(𝜃2)

𝑖

𝑗=1

𝜀𝑡+𝑟−2𝑗]

∞

𝑖=1

+ ∑ [∏(𝜃1 + 𝜑1)

𝑖

𝑗=1

𝜀𝑡+𝑟−𝑗] + 𝜀𝑡+𝑟

∞

𝑖=1

 

           (28) 

 Setting 𝑣 = 𝑡 + 𝑟, then the above equation (28) can be rewrite as, 

 

kv = ∑[∏(𝜃2)

𝑖

𝑗=1

𝜀𝑣−2𝑗]

∞

𝑖=1

+ ∑[∏(𝜃1 + 𝜑1)

𝑖

𝑗=1

𝜀𝑣−𝑗] + 𝜀𝑣

∞

𝑖=1

 

      (29) 

The future prediction error of equation (29) can be written as, 
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kv − 𝑘̂𝑣 = ∑[∏(𝜃2)

𝑖

𝑗=1

𝜀𝑣−2𝑗]

𝑣−1

𝑖=1

+ ∑[∏(𝜃1 + 𝜑1)

𝑖

𝑗=1

𝜀𝑣−𝑗] + 𝜀𝑣

𝑣−1

𝑖=1

 

                     (30) 

From the above lemma, the dispersion is given by, 

 

disp km = E(km − k̂m)
2

= E {km − k̂m − ∑ ξv(kv − k̂v)

n

v=m+1

}

2

 

                               (31) 

 

If the second part of the above equation (31) is simplified, then it can be obtained that the dispersion is given by, 

 

disp km = E(km − k̂m)
2
− 2 { ∑ ξv(km − k̂m)(kv − k̂v)

n

v=m+1

} + 𝐸 { ∑ ξv(kv − k̂v)

n

v=m+1

}

2

 

                     (32) 

 

Now, substituting the above equation (30) in to the equation (32), it can be obtained that the dispersion given by 

𝑑𝑖𝑠𝑝 𝑘𝑚 is; 

 

disp km = E(km − k̂m)
2
− 2E(em) [∑ ξv(em)n

v=m+1 (
∑ [∏ (θ2)i

j=1 εv−2j]
∞
i=1

+∑ [∏ (θ1+φ1)i
j=1 εv−j]+εv

∞
i=1

)]  

     +E [∑ ξv (
∑ [∏ (θ2)i

j=1 εv−2j]
∞
i=1

+∑ [∏ (θ1+φ1)i
j=1 εv−j]+εv

∞
i=1

)n
v=m+1 ]

2

                                               (33) 

Evaluating further the above equation (33) to its equivalent terms, then it can be expressed that, 

 

The first term is 

 

E(km − k̂m)
2

= 𝐸(Ԑ𝑚)2 

 

The second term is,  

 

−2𝐸[𝑒𝑚] [

𝜉𝑚+1𝜃2Ԑ𝑚−1 + 𝜉𝑚+1(𝜃1 + 𝜑1)Ԑ𝑚−1 + 𝜉𝑚+1Ԑ𝑚−1 

𝜉𝑚+2𝜃2Ԑ𝑚 + 𝜉𝑚+2(𝜃1 + 𝜑1)
2Ԑ𝑚+1 + 𝜉𝑚+2Ԑ𝑚+2 

𝜉𝑚+3𝜃3
3𝜃2Ԑ𝑚+1 + 𝜉𝑚+3(𝜃1 + 𝜑1)

2Ԑ𝑚+2 + 𝜉𝑚+3Ԑ𝑚+3 + ⋯

]  

Which can further be simplified to be, 

−2𝐸 [ ∑ (Ԑ𝑚
2 )𝜉𝑣𝜃2

𝑛

𝑣=𝑚+2

 ]  

 

The third term can be expressed as, 

 

+ ∑ 𝜉𝑣
2 ∙ ∑[∐(𝜃2)

2

𝑖

𝑗

Ԑ𝑣−2𝑗
2 ] + ∑ 𝜉𝑣

2

𝑛

𝑣=𝑚+1

∙ ∑[∏(𝜃1 + 𝜑1)
2Ԑ𝑣−𝑖

2

𝑗

𝑖

]

𝑛

𝑗

+ ∑ 𝜉𝑣
2

𝑛

𝑣=𝑚+1

Ԑ𝑣
2

∞

𝑖=1

𝑛

𝑣=𝑚+1

   

 

Can be evaluated as, 

 

+𝐸 [

𝜉𝑚+1
2 ∙ (𝜃2)

2Ԑ𝑚−1
2 + 𝜉𝑚+1

2 ∙ (𝜃1 + 𝜑1)
2Ԑ𝑚

2 + 𝜉𝑚+1
2 Ԑ𝑚+1

2

𝜉𝑚+2
2 ∙ (𝜃2)

4Ԑ𝑚
2 + 𝜉𝑚+1

2 ∙ (𝜃1 + 𝜑1)
4Ԑ𝑚+1

2 + 𝜉𝑚+2
2 Ԑ𝑚+2

2

𝜉𝑚+3
2 ∙ (𝜃2)

8Ԑ𝑚+1
2 + 𝜉𝑚+3

2 ∙ (𝜃1 + 𝜑1)
6Ԑ𝑚+1

2 + 𝜉𝑚+3
2 Ԑ𝑚+3

2 + ⋯

] 
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Which can be written as, 

 

+𝐸 ( ∑ 𝜉𝑣
2 ∙ (𝜃2)

2(𝑣−𝑚)Ԑ𝑣
2

𝑛

𝑣=𝑚+1

 + ∑ 𝜉𝑣
2 ∙ (𝜃1 + 𝜑1)

2(𝑣−𝑚)Ԑ𝑣
2

𝑛

𝑣=𝑚+1

 + ∑ 𝜉𝑣
2Ԑ𝑣

2

𝑛

𝑣=𝑚+1

 +  ⋯) 

 

Which can write the generalized equation of the above expression as; 

 

+𝐸 { ∑ 𝜉𝑣
2Ԑ𝑣

2[(𝜃2)
2(𝑣−𝑚) + (𝜃1 + 𝜑1)

2(𝑣−𝑚) + 1 ]

𝑣−𝑚

𝑣=𝑚+1

} 

 

Putting all the worked terms of equation (33) together, then it can be found that the dispersion becomes, 

 

disp 𝑘𝑡 = E(Ԑm)2 − 2E [ ∑ (Ԑm
2 )ξvθ2

𝑛

v=m+2

 ] + E { ∑ ξv
2Ԑv

2[(θ2)
2(v−m) + (θ1 + φ1)

2(v−m) + 1 ]

𝑛

v=m+1

} 

           (34) 

 

Substituting into the above equation (34) for the errors using the characteristics of the assumed distribution 

(Student t distribution), then it can be written that the dispersion can be given as,  

 

disp 𝑘𝑡 =
𝑛

𝑛 − 2
− 2

𝑛

𝑛 − 2
[ ∑ ξvθ2

n

v=m+2

 ] +
𝑛

𝑛 − 2
{ ∑ ξv

2[(θ2)
2(v−m) + (θ1 + φ1)

2(v−m) + 1 ]

n

v=m+1

} 

                  (35) 

 

Differentiating the above equation with respect to ξv  

 

∂

∂ξv
(disp 𝑘𝑡) =

∂

∂ξv
(

𝑛

𝑛 − 2
) − 2

∂

∂ξv
[

𝑛

𝑛 − 2
[ ∑ ξvθ2

n

v=m+2

 ]] +
∂

∂ξv
[

𝑛

𝑛 − 2
{ ∑ ξv

2[(θ2)
2(v−m) + (θ1 + φ1)

2(v−m) + 1 ]

n

v=m+1

}] 

           (36) 

 

Setting it to zero, it can be obtained that ξv can be obtained as,  

 

ξv = ∑
𝜃2

(θ2)
2(v−m) + (θ1 + φ1)

2(v−m) + 1

𝑛

𝑣=𝑚+1

 

        (36) 

 

Substituting the above equation (36) into the expression of the interpolation given by equation (9), it can be 

found that the optimal linear interpolator for ARMA (1,2) can be given by; 

 

𝑘̂t = θ2𝑘̂t−2 + θ1𝑘̂t−1 + φ1Ԑt−1 + ∑
𝜃2

(θ2)
2(v−m) + (θ1 + φ1)

2(v−m) + 1
(kv − k̂v)

𝑛

𝑣=𝑚+1

 

 

3.2 Synthetic data Generation and Simulation 
 

The study generated 1000 samples using the scripts in R statistical package version 4.42. The R scripts were 

used to generate the required synthetic data sets. The generated samples took into consideration the student’s t 

assumptions.  The study considered the generation of 100 missing value positions within the created synthetics 

data set. The packages for imputations were also installed accordingly to perform the imputation. The missing 

mechanism for the missing data in the simulated data was missing at random (MAR) mechanism. The codes for 

simulations are provided here in. 

 

Non-stationary illustrations of the simulated data are given by the following time series plot 
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Fig. 2. Non-Stationary Plot for Simulated data 

 

The illustration of the missing data at random in the simulated data sets. The figure below has 100 values of 

missing data 

 

 
 

Fig. 3. Non-stationary data plot with missing values 
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Fig. 4. Residuals and ACF plots for non-stationary data 

 

The above Fig. 3, gives the ACF and the residuals of the used data sets. 

 

Imputing the created missing values using the derived model for ARMA (1,1) process, the illustration is given 

below in Fig. 4. 

 

 
 

Fig. 5. Imputed Plot for ARMA (1,1) model   
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The above Fig. 5, shows how the imputation with the estimator for ARMA (1,1) was plotted.  It’s clear that the 

imputation is almost actuate. 

 

Imputing missing values for ARMA (2,1) process, then this is how the ACF and the Residuals behaved from the 

used data. 

 
 

Fig. 6. Residuals and ACF plots for simulated data 

 

The illustration of the imputed missing data using the time series plot is given by the following figure. 

 

 
 

Fig. 7. Imputed plots for ARMA (2, 1) Model 
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The imputation from the state-of-the-art imputation methods ware done using the ANN imputation. Its 

observation is given by the following plots of the AFC and the residuals. 

 

 
 

Fig. 8. Residuals and ACF plots for the simulated data 

 

 
 

Fig. 9. Imputed plots for ANN Technique 
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Imputing missing values using the Kalman filters was also illustrated using the following plot on Fig. 10. 

  

 
 

Fig. 10. Imputed plots for Kalman Filters 

 

Imputing missing values using the KNN algorithm, was also illustrated using the following plot on Fig. 11.  

 

 
 

Fig. 11. Imputed plot for KNN Technique   
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The comparison of the imputation accuracy was conducted between the derived imputation estimators for 

ARMA time series processes and the convectional imputation techniques for missing values. The study utilized 

the metrics such as; Mean error (ME), Root mean squared error (RMSE), Mean absolute errors (MAE), Mean 

percentage error (MPE) and the mean absolute percentage errors (MAPE). The results obtained from the 

calculated values of the metrics used were the true indications of the models used in imputation of missing 

values as in the following table. 

 

Table 1. Imputation Accuracy Measures 

 

 ME RMSE MAE MPE MAPE 

ARMA (1,1)  0.0261   0.4092  0.0988  16.387     17.0 

ARMA (2,1)  0.0138 0.4457  0.1087 16.193 16.791 

ANN  -0.010 0.3915 0.09385 6.5672 7.3078 

KALMAN  0.00347 0.2656 0.06375 -7.9459 9.602 

KNN 0.00386 0.088 0.0214 0.6864 0.9310 

 

It is evident from the above Table 1 that ARMA (2,1) model was superior than ARMA (1,1) in prediction of the 

missing values in time series data context. This is as a result of calculated metric’s values of ARMA (2,1) were 

lower than those of ARMA (1,1) process. Besides, the study found out that the machine learning imputation 

techniques such as ANN, Kalman and KNN were more efficient than the ARMA process time series models. 

This is attributed by the lower values of the metrics used, meaning that these models have higher predictability 

in imputing missing values. Finally, the KNN technique was the best in predicting missing values in time series.  

 

4 Conclusion and Future Work 
 

The derived ARMA imputation estimators, were able to compete favorably with the state-of-the-art imputation 

techniques like ANN, Kalman filters and the KNN. There is need to conduct a clear comparison of the 

developed imputation estimators and other methods of imputation like Bayesian, Nonparametric imputation 

techniques besides the ones used in this study. Also, using real data sets in assessing the imputation efficiency 

need be carried out. 
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Appendix 

 
# load packages 

library(ggplot2) 

library(forecast) 

# set seed for reproducibility 

set.seed(44) 

# set parameters 

n <- 1000  # number of records 

df <- 5    # degrees of freedom the t-distribution 

mu <- 0    # mean of the time series 

sigma <- 1 # standard deviation of the time series 

ncp <- 0   # non-centrality parameter (optional) 

NAs <- 100 # number of missing records 

# create time indices 

time_index <- 1:n 

# generate trend and seasonal components 

trend <- 0.1 * time_index 

seasonal_component <- sin(2 * pi * time_index / 12) 

# simulate the random walk component using t-distribution 

random_walk <- cumsum(rt(n, df) * sigma + mu) 

# combine the components and create a time series 

ts_data <- ts(trend + seasonal_component + random_walk, start = c(2000, 1), frequency = 12) 

# Convert time series to data frame 

df_ts_data <- data.frame(Time = time_index, Value = as.numeric(ts_data)) 

# custom graph theme 

cust_theme <- function(){ 

theme(plot.title = element_text(face = "bold", 

hjust = 0.5, 

size = 16, 

family = "serif", 

color = "black"), 

plot.subtitle=element_text(face = 'italic', 

hjust = 0.5, 

size = 12, 

family = "serif", 

color = 'black'), 

axis.title = element_text(face = "bold", 

size = 11.5, 

family = "serif", 

color = "black"), 

axis.text = element_text(face = "plain", 

size = 10, 

family = "serif", 

color = "black"), 

strip.text.x = element_text(face = "bold", 

size = 13.5, 

family = "serif", 

color = "black"), 

axis.text.x = element_text(angle = 0, 

hjust = 1, 

vjust = 0.5), 

plot.background = element_rect(fill = "#E0DCC8", 

color = "black", 

linewidth = 1), 

panel.background = element_rect(fill = "#E0DCC8"), 
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axis.line = element_line(color = "black"), 

axis.ticks = element_line(color = "black"), 

legend.position = "top", 

legend.direction = "horizontal", 

legend.background = element_rect(fill = "lightblue") 

) 

} 

# visualize the time series using ggplot2 

line_graph_t_series <- ggplot(df_ts_data, aes(x = Time, y = Value)) + 

geom_line() + 

labs(title = "Simulated Non-Stationary Time Series Data with Trend, Seasonality 

, and t-Distributed Random Walk", 

x = "Time", 

y = "Value", 

subtitle = paste0("n = ", n, 

", df = ", df, 

", mu = ", mu, 

", sigma = ", sigma, 

", ncp =", ncp)) + 

cust_theme() 

# print visual 

line_graph_t_series 

# introduce missing data at random (data frame), ensuring reproducibility 

set.seed(44) 

missing_indices <- sample(1:n, NAs) 

df_ts_data$Value_miss <- df_ts_data$Value 

df_ts_data$Value_miss[missing_indices] <- NA 

# introduce missing data at random (non-data frame), ensuring reproducibility 

ts_data_miss <- ts_data 

ts_data_miss[missing_indices] <- NA 

# visualize missing Values 

df_ts_data <- df_ts_data |> 

dplyr::mutate(Missing = dplyr::if_else(!is.na(Value_miss), "No", 

dplyr::if_else(is.na(Value_miss), "Yes", ""))) 

(line_graph_t_series_miss <- df_ts_data |> 

ggplot(aes(x = Time, 

y = Value, 

color = Missing)) + 

geom_jitter(size = 1, pch = 20) + 

scale_color_manual(values = c("Yes" = "red", "No" = "steelblue")) + 

labs(title = "Simulated Non-Stationary Time Series Data with Trend, Seasonality, 

and t-Distributed Random Walk Showing Missing Values", 

x = "Time", 

y = "Value", 

color = "Missing Data?", 

subtitle = paste0("n = ", n, 

", df = ", df, 

", mu = ", mu, 

", sigma = ", sigma, 

", ncp =", ncp, 

", NAs =", NAs)) + 

cust_theme() 

 

# save data into disc 

data_dir <- paste0(getwd(), "/SimulatedData") 

if(!dir.exists(data_dir)){ 

dir.create(data_dir) 
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} else {print("Directory Exists!")} 

write.csv(x = df_ts_data, 

file = paste0(data_dir, "/simulated_t_series_data.csv"), 

row.names = FALS 
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