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Abstract 
 

Research problems are often modeled using sets of linear equations and presented as matrix equations. 
Eigenvalues and eigenvectors of those coupling matrices provide vital information about the 
dynamics/flow of the problems and so needs to be calculated accurately. Analytical solutions are 
advantageous over numerical solutions because numerical solutions are approximate in nature, whereas 
analytical solutions are exact. In many engineering problems, the dimension of the problem matrix is 3 
and the matrix is symmetric. In this paper, the theory behind finding eigenvalues and eigenvectors for 
order 3×3 symmetric matrices is presented. This is followed by the development of analytical solutions 
for the eigenvalues and eigenvectors, depending on patterns of the sparsity of the matrix. The developed 
solutions are tested against some examples with numerical solutions. 
 

 
Keywords: Eigenvalues; eigenvectors; linear algebra; analytical solutions. 
 

1 Introduction 
 

Physical systems can be expressed using sets of linear and nonlinear equations. In the linear/linearized 
models, the system behavior is explained with the help of eigenvalues and corresponding eigenvectors. A 
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majority of systems are applicable to, or expre
linear or linearized equations. In these linear equations, the dependent and independent vectors are coupled 
using a matrix, a “coupling matrix.” This coupling matrix has different names. In stress
or Hooke’s Law for elastic deformation, it is called a stiffness matrix or compliance matrix depending on if 
stress or strain is the independent quantity. The state of stress or strain at a point in a body (see Fig
expressed using a second-order tensor, or a matrix of order(dimension) 3×3. The eigenvalues of this matrix 
express the principal stresses or strains, and the eigenvectors represent the directions in the space of the 
corresponding eigenvalues [1, 2, 3]. In dynamical systems (linear or linearized), eigenvalues of the coupling 
matrix express and characterize the fixed points of the system 
essential information to many other problems like matrix diagonalization 
chemical reactions [7], face recognition 
orbitals [11] and more. 
 

 

(a) 
 

Fig. 1. (a) A general 3D body with different loads acting on its surface. (b) Free body diagram of a 
portion of (a). (c) Visualization of the stresses acting on different faces of a cube of vanishing 

dimensions representing a point in the body also called a 

 
Numerical methods work well for finding eigenvalues and eigenvectors with a certain accuracy. There are a 
number of efficient numerical algorithms available for finding eigenvalues and eigenvectors. Some prevalent 
algorithms are the Power iteration method 
and publicly available software packages for finding eigenvalues and eigenvectors, i.e. LAPACK 
(GNU scientific library) [16], ARPACK 
These software are optimized for larger matrices, and using these software to find eigenvalues and 
eigenvectors of 3×3 symmetric matrices is not optimal. In this article, the authors propose an analytical 
routine to find the eigenvalues and eigenvectors efficiently in a simple and robust way. Any analytical 
solution is inherently more efficient since it is a straightforward solution utilizing substitution and thus 
requiring no iterations. The theory associat
examples and a flowchart of an implemented code are shown.
 

2 Theory 
 
Consider the following 3×3 real-valued symmetric matrix:
 

� = �

��� ��� ���

��� ��� ���

��� ��� ���

�   

 
For any matrix of rank � (maximal number of independent columns or rows of a matrix), there exist 
scalars �� for which eq (1) is true where 
and matrix symmetry means ��� = ���

 
 ��⃗� = ���⃗�  
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majority of systems are applicable to, or expressed in, three-dimensional space and can be modeled using 
linear or linearized equations. In these linear equations, the dependent and independent vectors are coupled 
using a matrix, a “coupling matrix.” This coupling matrix has different names. In stress-strain relationships 
or Hooke’s Law for elastic deformation, it is called a stiffness matrix or compliance matrix depending on if 
stress or strain is the independent quantity. The state of stress or strain at a point in a body (see Fig

order tensor, or a matrix of order(dimension) 3×3. The eigenvalues of this matrix 
express the principal stresses or strains, and the eigenvectors represent the directions in the space of the 

. In dynamical systems (linear or linearized), eigenvalues of the coupling 
matrix express and characterize the fixed points of the system [4]. Eigenvalues and eigenvectors also provide 

ormation to many other problems like matrix diagonalization [5], vibration analysis 
, face recognition [8], electrical networks [9], Markov chain model 

 

�

= �

���

���

���

 
 

(b) (c) 

(a) A general 3D body with different loads acting on its surface. (b) Free body diagram of a 
portion of (a). (c) Visualization of the stresses acting on different faces of a cube of vanishing 

dimensions representing a point in the body also called a material point. (d) The stress tensor at a 
material point [1] 

Numerical methods work well for finding eigenvalues and eigenvectors with a certain accuracy. There are a 
number of efficient numerical algorithms available for finding eigenvalues and eigenvectors. Some prevalent 
algorithms are the Power iteration method [12], Jacobi method [13], and QR [14]. There are also efficient 
and publicly available software packages for finding eigenvalues and eigenvectors, i.e. LAPACK 

, ARPACK [17], Armadillo [18], NumPy [19], SciPy [20] and Intel MKL 
These software are optimized for larger matrices, and using these software to find eigenvalues and 
eigenvectors of 3×3 symmetric matrices is not optimal. In this article, the authors propose an analytical 
outine to find the eigenvalues and eigenvectors efficiently in a simple and robust way. Any analytical 

solution is inherently more efficient since it is a straightforward solution utilizing substitution and thus 
requiring no iterations. The theory associated with each step of our algorithm is explained, and a couple of 
examples and a flowchart of an implemented code are shown. 

valued symmetric matrix: 

       

(maximal number of independent columns or rows of a matrix), there exist 
for which eq (1) is true where � = 1 ⋯ �. In the case herein of a 3×3 symmetric matrix 

��. 
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dimensional space and can be modeled using 
linear or linearized equations. In these linear equations, the dependent and independent vectors are coupled 

strain relationships 
or Hooke’s Law for elastic deformation, it is called a stiffness matrix or compliance matrix depending on if 
stress or strain is the independent quantity. The state of stress or strain at a point in a body (see Fig. 1) is 

order tensor, or a matrix of order(dimension) 3×3. The eigenvalues of this matrix 
express the principal stresses or strains, and the eigenvectors represent the directions in the space of the 

. In dynamical systems (linear or linearized), eigenvalues of the coupling 
. Eigenvalues and eigenvectors also provide 

, vibration analysis [6], 
, Markov chain model [10], atomic 

�� ��� ���

�� ��� ���

�� ��� ���

� 

(d) 

(a) A general 3D body with different loads acting on its surface. (b) Free body diagram of a 
portion of (a). (c) Visualization of the stresses acting on different faces of a cube of vanishing 

. (d) The stress tensor at a 

Numerical methods work well for finding eigenvalues and eigenvectors with a certain accuracy. There are a 
number of efficient numerical algorithms available for finding eigenvalues and eigenvectors. Some prevalent 

. There are also efficient 
and publicly available software packages for finding eigenvalues and eigenvectors, i.e. LAPACK [15], GSL 

and Intel MKL [21]. 
These software are optimized for larger matrices, and using these software to find eigenvalues and 
eigenvectors of 3×3 symmetric matrices is not optimal. In this article, the authors propose an analytical 
outine to find the eigenvalues and eigenvectors efficiently in a simple and robust way. Any analytical 

solution is inherently more efficient since it is a straightforward solution utilizing substitution and thus 
ed with each step of our algorithm is explained, and a couple of 

           (0) 

(maximal number of independent columns or rows of a matrix), there exist � 
. In the case herein of a 3×3 symmetric matrix �, � = 3 

           (1) 
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The scalar quantity λ� is termed the �th eigenvalue of the matrix, and the vector �⃗�  the eigenvector of the 
matrix associated with λ�. Re-writing eq. (1) and taking the determinant, the eigenvalues of matrix � can be 
found using eq. (2). 
 
 |� − λ�I| = 0           (2) 
 
where |⋅|  represents the determinant of any matrix, and I represents the identity matrix. The resulting 
equation from the determinant in eq. (2) is known as the characteristic polynomial [22] of matrix �. From 
elementary linear algebra, the eigenvalues of a real symmetric matrix �  are also real [23]. Hence, the 
obtainment of the three real eigenvalues of a 3 × 3 symmetric matrix is tantamount to finding the roots of 
the cubic characteristic polynomial. The characteristic equation for this matrix can be written as:  
 
 λ� − αλ� − βλ − γ = 0            (3) 
 
where,  
 
 α = ��� + ��� + ��� 

β = ���
� + ���

� + ���
� − ������ − ������ − ������ 

γ = ��������� + 2��������� − ������
� − ���

� ��� − ���
� ��� 

        (4a) 
        (4b) 
         (4c) 

 
Here, α and γ are the trace and the determinant of matrix A, respectively. Alternatively, β can be written as 

�− �
��� ���

��� ���
� − �

��� ���

��� ���
� − �

��� ���

��� ���
��. In addition, α, β and γ are also known as the invariants of the 

matrix because they remain constant upon the rotational transformation of the matrix between different 
orthogonal coordinate systems. The characteristic equation can be solved analytically as follows [1] for the 
three roots λ�, λ� and λ�:  
 
 

� = − �
3β + α�

3
� 

� = − �γ +
2α�

27
+

αβ

3
� 

cos ϕ = −
�

2�(|�|/3)�
 

 

           (5) 

 

λ� =
α

3
+ 2�

|�|

3
cos �

ϕ

3
� 

λ� =
α

3
− 2�

|�|

3
cos �

ϕ − π

3
� 

λ� =
α

3
− 2�

|�|

3
cos �

ϕ + π

3
� 

           (6) 

 
In some cases, and from the structure of matrix � , one can readily determine some eigenvalues. For 
example, knowing λ� and using the facts in eq. (7), one can derive the alternate eq. (8) to determine the other 
two eigenvalues λ� and λ� 
 
 λ� + λ� + λ� = α 

λ�λ�λ� = γ 
           (7) 
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λ�,� =
α − λ�

2
± ��

α − λ�

2
�

�

−
γ

λ�
            (8) 

 
Also, with knowledge of λ� and λ�, one can find λ� using eqs. (7) and (9) 
 
 λ� = α − λ� − λ� =

γ

λ�λ�

            (9) 

 
The eigenvectors of matrix � correspond to the eigenvalues as follows. Re-write eq. (1) as eq. (10):  
 
 (� − λ�I)�⃗� = 0�⃗           (10) 

 
Here, λ� and �⃗� are the ith eigenvalue and ith eigenvector of �, where � = 1 ⋯ 3.  
 
Let �⃗� = {��, ��, ��}. Eq. (10) can be written explicitly in full unabridged form as follows: 
 
 

�

��� − λ� ��� ���

��� ��� − λ� ���

��� ��� ��� − λ�

� �
��

��

��

� = �          (11) 

 
Let �� = � − λ�I. Eq. (11) can then be written as three linear algebraic equations as: 
 
 ���

� �� + ����� + ����� = 0 
 

����� + ���
� �� + ����� = 0 

 

����� + ����� + ���
� �� = 0 

        (12a) 
 

        
(12b) 

 
        (12c) 

 
Notice in these last equations that ���

� = ��� − λ����, where ��� is the stth element of the Kronecker delta. 
Note that also for simplicity, the superscript i is dropped from ���

�  if s≠t. Since the equations (12a-12c) are 
not all linearly independent from one other, they cannot be solely used to find the unknowns ��, ��, and ��. 
Hence, an additional or auxiliary equation is needed. This equation comes from the fact that the eigenvector 
�⃗� is a directional unit vector. With this fact, the additional equation is: 
 
 ��

� + ��
� + ��

� = 1          (13) 
 
In this paper, two eigenvectors are found by solving equations (12) and (13) for each of the two eigenvalues. 
Once these two vectors are found, the third eigenvector is determined from the cross product of the found 
two. Alternatively, the third eigenvector can also be found using equations (12) and (13). 
 
As mentioned earlier, it is possible in some cases to readily determine the eigenvalues of matrix �. Hence, in 
order to make the current algorithm efficient computationally, several cases of matrix � are considered 
herein depending on the structure of the matrix.  
 

3 Methodology 
 
Case 1: Only Diagonal Elements Present (in �) 
 
In the case that all off-diagonal elements in � are zero, the eigenvalues of the diagonal matrix are the 
diagonal elements [23], i.e. ��� , ���  and ��� . Here, and the eigenvectors are also simple, i.e. 
{{1,0,0}, {0,1,0}, {0,0,1}} 



 
 
 

Siddique and Khraishi; JAMCS, 35(7): 106-118, 2020; Article no.JAMCS.61833 
 
 
 

110 
 
 

Case 2: Generalized Plane Stress or Plane Strain 
 
Here, three sub-cases are considered: 
 

Case 2.1: If � = �

��� 0 0
0 ��� ���

0 ��� ���

� 

 
Here, and straight-forwardly, λ� = ���. The other two eigenvalues λ� and λ� can be found either from eq. (6) 
or eq. (8). Alternatively, Mohr’s circle in the yz-plane can be used to find λ� and λ� as below [1]. Hence, the 
three eigenvalues are: 
 
λ� = ��� 
 

λ�,� =
��� + ���

2
± ��

��� − ���

2
�

�

+ ���
�  

 
One eigenvector {1,0,0} corresponding to λ� = ��� is readily obtainable since all the off-diagonal terms in 
the first row and column (associated with the x-axis) are zeroes. The other two can be found in the yz-plane 
from equations (12) and (13). The last eigenvector can be obtained from the cross-product of the first two. 
These eigenvectors are: 
 

�{1,0,0}, �0, −
���

� ���
�� ����

�
,

���
�

� ���
�� ����

�
� , �0, −

���
�

� ���
�� ����

�
, −

���

� ���
�� ����

�
��  

 

Case 2.2: If � = �
��� 0 ���

0 ��� 0
��� 0 ���

� 

 
For this case, one eigenvalue (λ� = ���) is readily obtainable and the corresponding eigenvector is also 
readily obtainable {0,1,0}. The other two eigenvalues (λ� and λ�) are obtained from eq. (6) or (8), or using 
Mohr's circle as below: 
 
λ� = ��� 
 

λ�,� =
��� + ���

2
± ��

��� − ���

2
�

�

+ ���
�  

 
The eigenvectors are obtained from equations (12) and (13), and from doing a cross-product: 
 

��−
���

� ���
�� ����

�
, 0,

���
�

� ���
�� ����

�
� , {0,1,0}, �

���
�

� ���
�� ����

�
, 0,

���

� ���
�� ����

�
��  

 

Case 2.3: If � = �

��� ��� 0
��� ��� 0
0 0 ���

� 

 
This case follows similarly to Case 2.1 and Case 2.2, and hence the eigenvalues are: 
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λ� = ��� 
 

λ�,� =
��� + ���

2
± ��

��� − ���

2
�

�

+ ���
�  

 
and the eigenvectors are: 
 

� �−
���

� ���
�� ����

�
,

���
�

� ���
�� ����

�
, 0� , �−

���
�

� ���
�� ����

�
, −

���

� ���
�� ����

�
, 0� , {0,0,1}�  

 
Case 3: General Cases 
 
In general, there will be less than four off-diagonal zero elements in �. The eigenvalues can be found using 
eqs. (5) and (6). For the eigenvectors, 9 different cases exist that can be considered depending on the 
combination of equations resulting from the elimination of variables in eqs. (12a-12c). The eigenvectors are 
provided here explicitly in order to make the algorithm computationally efficient and robust. 
 
For the sake of brevity, only three cases are shown here in detail. 
 

Case 3.1: If ����
� ��� − ���������� ≠ 0 or ����

� − ���
� ���

� ���� ≠ 0 
 

From ��� × (12�)– ���
� × (12�) one can write: 

 
 

�� =
���

� ��� − ������

���
� − ���

� ���
�

�� = ���� 

 

         (14) 

 
�� =

���
� − ���

� ���
�

���
� ��� − ������

�� = ℛ��� 

 

        (15) 

From (14) and (12c) one can write: 
 
 

�� = −
����� + ���

�

���

�� = ��
���          (16) 

 From (15) and (12c) one can write: 
 

�� = −
��� + ���

� ℛ�

���

�� = ��
���         (17) 

 
And using eq. (13) one can write: 
 
 

�� =
1

� ��
�� + ��

� + 1

 

�� =
1

� ��
�� + 1 + ℛ�

�

 

 

       (18) 

Hence, the eigenvector �⃗�  corresponding to λ� is either: 
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�
��

�

� ��
�����

���

,
��

� ��
�����

���

,
�

� ��
�����

���

� Or �
��

�

� ��
�����ℛ�

�
,

�

� ��
�����ℛ�

�
,

ℛ�

� ��
�����ℛ�

�
� 

 
Notice that these two vectors are opposite in direction to each other and hence the word “either”. Once the 
eigenvector is determined for one eigenvalue, this process is repeated for a second eigenvalue. Once a 
second eigenvector is determined, then a third one can be obtained from the cross-product of the first two. 
Alternatively, the third eigenvector can be determined by repeating the above process for the third 
eigenvalue.  
 

Case 3.2: If ����
� ���

� – ���
� ���� ≠ 0 or �������– ���

� ������� ≠ 0  
 

From ��� × (12�)– ���
� × (12c) one can write: 

 
 

�� =
���

� ���
� − ���

�

������ − ���
� ���

�� = ����          (19) 

 
�� =

������ − ���
� ���

���
� ���

� − ���
�

�� = ℛ��� 

 

         (20) 

 
From (19) and (12b) one can write: 
 
 

�� = −
���

� �� + ���

���

�� = ��
���          (21) 

From (20) and (12b) one can write: 
 

�� = −
���

� + ���ℛ�

���
�� = ��

���           (22) 

 
And using eq. (13) one can write: 
 
 �� =

�

� ��
�����

���

  

�� =
�

� ��
�����ℛ�

�
  

         (23) 

 
Hence, the eigenvector �⃗�  is either: 
 

�
��

�

� ��
�����

���
,

��

� ��
�����

���
,

�

� ��
�����

���
� Or �

��
�

� ��
�����ℛ�

�
,

�

� ��
�����ℛ�

�
,

ℛ�

� ��
�����ℛ�

�
�  

 
Case 3.3: If �������

� − ����������
� ≠ 0 or ����

� ��� − ����������
� ≠ 0  

 
From ��� × (12b) − ��� × (12c),  
 
 

�� =
������

� − ������

���
� ��� − ������

�� = ���� 

 

         (24) 

 
�� =

���
� ��� − ������

������
� − ������

�� = ℛ���          (25) 
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From (24) and (12a)  
 
 

�� = −
����� + ���

���
�

�� = ��
��� 

 

         (26) 

From (25) and (12a)  
 
 

�� = −
��� + ���ℛ�

���
�

�� = ��
���           (27) 

 
And using eq. (13) the following can be written  
 
 

�� =
1

� ��
�� + ��

� + 1

 

 

�� =
1

� ��
�� + 1 + ℛ�

�

 

         (28) 

 
The eigenvector �⃗�  is either 
 

�
��

�

� ��
�����

���
,

��

� ��
�����

���
,

�

� ��
�����

���
� Or �

��
�

� ��
�����ℛ�

�
,

�

� ��
�����ℛ�

�
,

ℛ�

� ��
�����ℛ�

�
�  

 

Case 3.4: If �������  −  ������
� ���� ≠ 0 or ����

� ���
� − ���

� ���� ≠ 0 
 
 The eigenvector is either  
 

�
��

� ��
����

����

,
��

�

� ��
����

����

,
�

� ��
����

����

� Or �
�

� ����
���ℛ�

�
,

��
�

� ����
���ℛ�

�
,

ℛ�

� ����
���ℛ�

�
� ,  

 
Where 
 
������ � ������

�

���
� ���

� ����
� = �� , 

���
� ���

� ����
�

������ � ������
� = ℛ� ,  −

���������
�

���
= ��

�  , and −
�������

� ℛ�

���
= ��

� 

 

Case 3.5: If �������
� − ����������

� ≠ 0 or ����
� ��� − ����������

� ≠ 0 
 
The eigenvector is either  
 

�
��

� ��
����

����

,
��

�

� ��
����

����

,
�

� ��
����

����

� Or �
�

� ����
���ℛ�

�
,

��
�

� ����
���ℛ�

�
,

ℛ�

� ����
���ℛ�

�
� ,  

 
Where 
 
������

� �������

���
� ����������

= �� , 
���

� ����������

������
� �������

= ℛ� , −
���������

���
� = ��

� , and −
�������ℛ�

���
� = ��

�    
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Case 3.6: If ����
� ���

� − ���
� ���� ≠ 0 or ������� − ���

� ������� ≠ 0 
 
The eigenvector is either  
 

�
��

� ��
����

����
,

��
�

� ��
����

����
,

�

� ��
����

����
� Or �

�

� ����
���ℛ�

�
,

��
�

� ����
���ℛ�

�
,

ℛ�

� ����
���ℛ�

�
� ,  

 
Where 
 

���
� ���

� ����
�

����������
� ���

= �� , 
����������

� ���

���
� ���

� ����
� = ℛ� , −

���
� ������

���
= ��

� , and −
���

� ����ℛ�

���
= ��

�      

 

Case 3.7: If �������
� − ����������

� ≠ 0 or ����
� ��� − ����������

� ≠ 0 
 
The eigenvector is either  
 

�
��

� ��
����ℛ�

��
,

�

� ��
����ℛ�

��
,
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Where 
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Case 3.8: If ������� − ������
� ���� ≠ 0 or ����

� ���
� − ���

� ���� ≠ 0 
 
The eigenvector is either 
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Case 3.9: If ����
� − ���

� ���
� ���� ≠ 0 or �������

� − ���������� ≠ 0 
 
The eigenvector is either 
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For all Case 3 (Cases 3.1-3.9), since there is at least one non-zero shear component (���
� ≠ 0, � ≠ �) then 

according to Mohr’s circle there will be at least two distinct principal stresses or eigenvalues, i.e. the 
multiplicity of the eigenvalue is maximum 2 in this case. This produces two distinct eigenvectors using the 
above methodology. Therefore, the third eigenvector can be obtained by cross product of the two distinct 
ones.  
 

4 Results 
 
Presented below is a couple of examples for different structures or sparsities of [A]. 
 
Example 1: Assume a piece of material/body under loading similar to what is shown in Fig. 1. The stress 
tensor, or stress state, at a point in the body is given by: 
 

 � = �

��� ��� ���

��� ��� ���

��� ��� ���

� = �
0.6375 0 −1.7835

0 7.1568 0
−1.7835 0 1.4508

� MPa 

 
Fig. 2(a) graphically shows the stresses in the xyz-coordinate system. To find the principal stresses and their 
direction in space, this is tantamount to an eigenvalue and eigenvector problem, as presented above.  

  
(a) (b) 

 
Fig. 2. Stresses at a material point expressed in the xyz-coordinate system. (b) Stresses at the same 

material point but expressed in the principal stress space (or rotated coordinate system) showing only 
normal stresses (principal stresses) and not shearing 

 
First off, one needs to determine the case of eigenvalue/eigenvector problem to which this stress state 
belongs. Comparing with above, this belongs under Case 2.2 (Generalized Plane Stress or Plane Strain). 
Using the equations there, the calculated eigenvalues are {−0.7851,   7.1568,   2.8734} and the calculated 
eigenvectors are {{0.7818,  0,  0.6236},  {0,  1,  0},   {−0.6236,  0,  0.7818}}.  
 
Note that each of the eigenvectors represent a vector in a 3×3 rotational transformation matrix, call it �, that 
transforms tensorial quantities from the unprimed coordinate system in Fig. 2(a) to the primed coordinate 
system in Fig. 2(b), or vice versa. The primed coordinate system here is in line with the principal stress 

directions. In fact, the ijth element of �  or ���  is generally given by ��� = �⃗�
′ ∙ �⃗� = ������ , where �⃗�

′  

represents one of the directional unit vectors along the positive primed coordinate system axes,  and �⃗� 

represents one of the directional unit vectors along the positive unprimed coordinate system axes. The 
elements of � are thus the direction cosines between the coordinate axes of the primed and the unprimed 
coordinate systems [1].  
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Example 2: Assume the stress state at a different material point in the loaded body to be:  
 

� = �

��� ��� ���

��� ��� ���

��� ��� ���

� = �
0 −1.0298 1.0792

−1.0298 1.2554 0
1.0792 0 0.1547

� MPa 

Again, to find the principal stresses and their directions, one needs to solve the eigenvalue/eigenvector 
problem. Comparing with above, this case belongs under Case 3: General Cases. More specifically, it falls 
under Case 3.1.  
 
To find the eigenvalues, one needs to apply eqs. (2-6). Here, = 1.4101 , � = 2.03095 , � =  −1.62619 , 
� =  −2.69374  , � =  0.463883 , ϕ = 1.84689 rad. Using these numbers, the three eigenvalues are 
{λ

�
,   λ�,   λ�} = {−1.2514,   0.6442,   2.0172}.  

 
To find the eigenvectors, one needs to use eqs. (14-18). Starting with the first eigenvalue λ1 , one can 
calculate �� = −0.5352, ℛ� = −1.8685, ��

� = −1.3029, and ��
� = 2.4344. Using these numbers and eq. 

(18.1), it can be found that �� = 0.5789. Using eq. (16), one can calculate �� = −0.7542. Finally using eq. 
(14), one can calculate �� = −0.3098. Now according to these numbers, the corresponding eigenvector is 
{−0.7542,  −0.3098,  0.5789}.  
 
Repeating the procedure above for the second eigenvalue λ2, one gets: �� = 0.7642 and ℛ� = 1.3085. Using 
eq. (16-17), ��

� = 0.4536 and ��
� = 0.5935 are calculated. Following this, one can calculate �� = 0.7475, 

�� = 0.3390 and �� = 0.5712, which means that the corresponding eigenvector is {0.3390,   0.5713,   0.7475}. 
 

To find the last eigenvector corresponding to the last eigenvalue λ3 , one can either repeat the above 
procedure similar to λ1 and λ2, or one can find it using a cross product between the first two eigenvectors. 
Both paths give the same result for the third eigenvector, i.e. {0.5622,  −0.7602,  0.3257}.  
 

It is important to note here that the numbers for Example 1 and Example 2 above were checked, in way of 
verification, against numerical computations by Matlab 2020a [24]. 
 

5 Algorithm 
 

The eigenvalues are obtained using eqs. (4), (5), and (6). Alternatively, eqs. (8) or (9) or Mohr's circle can be 
invoked for obtaining the eigenvalues. After that, the case of matrix � should be determined per the cases 
above. Once this determination is made, the correct set of equations can be used to find at least two different 
eigenvectors. The third eigenvector can be obtained from the cross product of the first two eigenvectors. A 
flowchart describing the whole algorithm, used by the authors in coding, is shown in Fig. 3. A pseudocode is 
also presented in Fig. 4. 
 

 
 

Fig. 3. Flowchart for coding eigenvalues and eigenvectors obtainment 
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Fig. 4. Pseudocode for coding eigenvalues and eigenvectors obtainment 

 
6 Conclusion 
 
In this article, the theory behind and algorithm to find eigenvalues and eigenvectors of a 3×3 symmetric 
matrix were presented. The current algorithm presents an efficient approach to finding the eigenvalues and 
eigenvectors for symmetric matrices of order(dimension) 3×3 over publicly available software packages 
since they have a learning curve and some are difficult to use. The current method is simple, optimized, 
robust and can easily be implemented in any programming language or even in a handheld calculator. The 
presented analytical solutions can prove to be handy for applications requiring repetitive finding/calculations 
of eigenvalues and eigenvectors. The solutions also represent a valuable exercise into understanding linear 
algebra for learners in the field.  
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