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ABSTRACT 
 

Aims: The aim of this study was In-Silico structural annotation of an amino acid sequence of 
Methylthioadenosine Nucleosidase Protein Zm00014a_031618 in Maize (Zea mays) retrieved from 
NCBI with the accession number PWZ58979. 
Study Design: The use of In-Silico studies for the structural annotation of Methylthioadenosine 
Nucleosidase protein. 
Place and Duration of Study: The research was conducted at the Bioinformatics Laboratory, 
Chevron Biotechnology Centre, Modibbo Adama University of Yola, Nigeria. Between June 2018 to 
July 2018.  
Methodology: The Methylthioadenosine Nucleosidase protein was retrieved from NCBI, physical 
and chemical parameters were calculated using ExPASy - ProtParam tool, the server SOPMA was 
used for secondary structure analysis (helix, sheets, and coils) and I-TASSER was used to obtain 
the 3D structure.  
Results: ExPASy - Prot Param tool computated the various physical and chemical parameters 
such as molecular weight (MW) 30117.97, total number of positively (+R) 27, negatively charged 
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residues (-R) 30, theoretical isoelectric point (pI) 5.96, aliphatic index (AI) 103.67 and grand 
average hydropathy (GRAVY) 0.293. The SOPMA server was used for calculating the secondary 
structural features of protein sequences as Alpha helix 39.16%, Extended strand 14.69%, Beta turn 
6.64% and Random coil 39.51%. I-Tasser was used for predicting the 3D structure where 2qttA 
from PDB was used as the template. 
Conclusion: This study helped in understanding the structural analysis of the Methylthioadenosine 
Nucleosidase Protein Zm00014a_031618 in maize (Z. mays). 
 

 

Keywords: Methylthioadenosine nucleosidase; 3D structure; I-Tasser; Maize genome; intraspecific. 
 

1. INTRODUCTION  
 
Maize (Zea mays L.) Poaceae for more than 
hundreds of years has been a subject of genetics 
studies [1]. It is one of the most extensively 
studied plant species in genetics and it is usually 
used as a research model for genome evolution 
and genetic diversity [2,3]. The genome is made 
up of 10 chromosomes with its size 
approximately 2.3 to 2.7 Gb, and it is a diploid 
plant [4,5,6,7]. Just like other larger genome of 
plant species, the Z. mays genome is typically 
made up of nongenic or low-copy DNA that 
harbors single genes. The repetitive elements 
are highly responsible for the wide range of 
diversity within the species which includes 
ribosomal DNA (rDNA), transposable elements 
(TEs) and high-copy short-tandem repeats 
mostly present at the centromeres, telomeres, 
and heterochromatin knobs [8,9,10,11]. Z. mays 
plant has an extraordinary level of genomic 
diversity, phenotypic [12] and transcriptomic [13-
15]. Looking at the genomic level Z. mays 
exhibits a high level of INDEL Polymorphisms 
[16,17] and Single Nucleotide Polymorphisms 
[18]. Averagely the frequency of single nucleotide 
polymorphism (SNP) between two maize inbreds 
is said to be approximately 1 substitution per 100 
bases [19,20]. Recent studies using sequencing 
data have shown that maize genome exhibits 
rather variable levels of naturally occurring 
genetic diversity which depends on the lines 
involved in the comparison [21,22]. 
Methylthioadenosine nucleosides catalyses the 
hydrolysis of the N-ribosidic bond of a variety of 
adenosine-containing metabolites. In the various 
Methylthioadenosine nucleosides homologs, it 
has been shown that the formation of the 
oxocarbenium ion intermediate can progress 
through either an early or late dissociative 
transition state [23]. Intraspecific genome 
variation has been long attributed to changes in 
the size of heterochromatic DNA outside coding 
sequences that expanded and contracted the 
chromosomes (98). Intraspecific variations which 
are approximately 38.8% from the average of 5.5 

pg/2n nuclei have been reported in Z. mays [22-
28]. Z. mays is known to have a large amount of 
intraspecific sequence variation [19,18] in form of 
deletion/insertion and single nucleotide 
polymorphisms. The main mechanism which 
have effect in the generation of intraspecific 
genome diversity and in the evolution of the 
maize genome, segmental duplications and 
whole genome duplications (polyploidisation), 
retrotransposition and DNA transposition, 
expansion/contraction of simple sequence 
repeats (SSRs)  and single base mutations and 
translocation of genes or gene segments by 
transposons and capture [22,29]. Intraspecific 
allelic variation is mostly as a result of qualitative 
changes that change the nature of the gene 
products and quantitative changes which also 
alter the amount of the gene product produced. 
Quantitative changes in gene expression can be 
as a result of cis- or trans variations in gene 
regulation [30]. 
 

The present study focused on the In Silico 
Structural Annotation of Methylthioadenosine 
Nucleosidase Protein Zm00014a_031618 in 
maize (Z. mays). 
 
2. MATERIALS AND METHODS 
 

2.1 Sequence Retrieval  
 
The amino acid sequence of 
Methylthioadenosine Nucleosidase                    
Protein Zm00014a_031618 (Z. mays) was 
retrieved from NCBI database 
(www.ncbi.nlm.nih.gov/protein/1394916517) with 
the accession number PWZ58979. 
 

2.2 Physiochemical Analysis 
 
The physiochemical properties of Methylth-
ioadenosine Nucleosidase protein such as 
molecular weight, atomic composition, amino 
acid composition, theoretical pI, instability index, 
aliphatic index, extinction coefficients and grand 
average of hydropathocity (GRAVY) was 



determined using ProtParam tool 
(web.expasy.org/cgi-bin/protparam/protparam) 
[31]. 
 

2.3 Secondary Structure Analysis
 

The server SOPMA was used for secondary 
structure analysis (helix, sheets, and coils) of the 
Methylthioadenosine Nucleosidase protein 
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.
pl?page=npsa_sopma.html) [32]. 
 
2.4 3D Structural Prediction and Binding

Residue Prediction 
 
The 3D structures were predicted with the use of 
I-TASSER [33] whereas The binding residue of 
Methylthioadenosine Nucleosidase Protein was 
predicted using COACH server [34].
 

3. RESULTS AND DISCUSSION
 
The present study focused on the 
Structural Annotation of an amino acid sequence 
  

Table 1. Physiochemical 

Molecular 
Weight (Da) 

pI -R 

30117.97 5.96 30 

Table 2. Structural features of the methylthioadenosine nucleosidase protein

Parameter % content
Alpha helix      39.16% 
310  helix        0.00% 
Pi helix  0.00% 
Beta bridge      0.00% 
Extended strand 14.69% 

 

Table. 3. Top 

Structural Models 
1 
2 
3 
4 
5 

 

Fig. 1. Fasta sequence of the Methylthioadenosine Nucleosidase Protein in maize 
Zm00014a_031618 (
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determined using ProtParam tool 
bin/protparam/protparam) 

Secondary Structure Analysis   

The server SOPMA was used for secondary 
structure analysis (helix, sheets, and coils) of the 
Methylthioadenosine Nucleosidase protein 

bin/npsa_automat. 

3D Structural Prediction and Binding 

The 3D structures were predicted with the use of 
TASSER [33] whereas The binding residue of 

Methylthioadenosine Nucleosidase Protein was 
predicted using COACH server [34]. 

SSION 

The present study focused on the In Silico 
Structural Annotation of an amino acid sequence 

of Methylthioadenosine Nucleosidase Protein 
Zm00014a_031618 in maize (Z. mays
NCBI database with the accession number 
PWZ58979 and 286 amino acid sequences.
  
The results presented in Table 
physicochemical characterisation of 
Methylthioadenosine Nucleosidase Protein 
Zm00014a_031618 in maize (Z. mays
amino acid sequence using Expasy’s ProtParam 
server. The Molecular weight (MW), the total 
number of positively (+R), negat
residues (-R), theoretical isoelectric point (pI), 
extinction coefficient (EC), aliphatic index (AI) 
and grand average hydropathy (GRAVY) was 
computed. 
 
The results as presented in Table 2 showed the 
SOPMA which was used for calculating the 
structural features of protein sequences such as 
Alpha helix, 310 helix, Pi helix, Beta bridge, 
Extended strand, Beta turn, Bend region, 
Random coil, Ambiguous states and Other 
states.

Physiochemical features of the hypothetical protein 
 

+R EC II AI 

27 13200 23.10 103.67 
 

features of the methylthioadenosine nucleosidase protein
 

% content Parameter % content
 Beta turn 6.64% 

Bend region 0.00% 
Random coil 39.51%
Ambiguous states 0.00% 

 Other states          0.00% 

Table. 3. Top five models C-scores from I-TASSER 
 

C-Scores 
1.03 
-2.32 
-1.98 
-2.65 
-2.94 

 

Fig. 1. Fasta sequence of the Methylthioadenosine Nucleosidase Protein in maize 
Zm00014a_031618 (Zea mays) 
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of Methylthioadenosine Nucleosidase Protein 
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NCBI database with the accession number 
PWZ58979 and 286 amino acid sequences. 

Table 1 showed the 
physicochemical characterisation of 
Methylthioadenosine Nucleosidase Protein 

Z. mays) with 286 
amino acid sequence using Expasy’s ProtParam 
server. The Molecular weight (MW), the total 
number of positively (+R), negatively charged 

R), theoretical isoelectric point (pI), 
extinction coefficient (EC), aliphatic index (AI) 
and grand average hydropathy (GRAVY) was 

The results as presented in Table 2 showed the 
for calculating the 

structural features of protein sequences such as 
Alpha helix, 310 helix, Pi helix, Beta bridge, 
Extended strand, Beta turn, Bend region, 
Random coil, Ambiguous states and Other 

GRAVY 

    0.293 

features of the methylthioadenosine nucleosidase protein 

% content 
 
 

39.51% 
 
 

 

Fig. 1. Fasta sequence of the Methylthioadenosine Nucleosidase Protein in maize 



 
Fig. 2. Structural prediction 

 
The instability index (II) was computed to be 
23.10 which make the Methylthioadenosine 
Nucleosidase protein classified as a stable 
protein because a protein whose instability index 
is less than 40 is said to be a stable protein [35]. 
The protein was predicted to have 286 amino 
acid sequences with several helices which are 
consistent with the ProtParam results present in 
Fig. 1 this makes the protein more flexible for 
folding which is likely to increase the protein 
interaction. The sequence of Methylthioa
denosine Nucleosidase protein was found to be 
rich in alanine. The proteins with very high AIn 
may show stability in a wide temperature range 
where lower AIn proteins are not thermally stable 
and show more flexibility. The amino acid 
sequences which had most in number are 
alanine [29] followed by leucine and valine [21], 
glycine and serine [24] and while the least is 
tryptophan (1). The Methylthioadenosine 
Nucleosidase protein had a total number of 30 
negatively charged residues (Asp + Glu)
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prediction of methylthioadenosine nucleosidase protein

The instability index (II) was computed to be 
23.10 which make the Methylthioadenosine 
Nucleosidase protein classified as a stable 
protein because a protein whose instability index 
is less than 40 is said to be a stable protein [35]. 

protein was predicted to have 286 amino 
acid sequences with several helices which are 
consistent with the ProtParam results present in 
Fig. 1 this makes the protein more flexible for 
folding which is likely to increase the protein 

e of Methylthioa-
denosine Nucleosidase protein was found to be 
rich in alanine. The proteins with very high AIn 
may show stability in a wide temperature range 
where lower AIn proteins are not thermally stable 
and show more flexibility. The amino acid 

nces which had most in number are 
alanine [29] followed by leucine and valine [21], 
glycine and serine [24] and while the least is 
tryptophan (1). The Methylthioadenosine 
Nucleosidase protein had a total number of 30 
negatively charged residues (Asp + Glu) and a 

total number of 27 positively charged residues 
(Arg + Lys). The molecular formula of the protein 
was found as C1354H2181N349O401S11

was shown to be 0.293GRAVY which shows a 
better interaction of protein and water is 
occurring in low GRAVY 
secondary structure of the Methylthioadenosine 
Nucleosidase protein was predicted by SOPMA 
server showed the random coil was the most 
predominant (39.51%), followed by alpha helix 
(39.16%), then extended strand (14.69%) and 
beta turn (6.64%) was the least. I
modelling server generated five models e PDB 
automatically. Model 1 with a C-score of 1.03 is 
the best model because it has the highest score 
compared to the remaining four models. So 
the Methylthioadenosine Nucleosidase protein 
structure was compared with model 1 (2qttA from 
PDB) since it has the highest C score as the best 
model. Methylthioadenosine nucleosidase helps 
essentially in multiple metabolic pathways in 
plants [37]. 
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Fig. 3. Top 
 

Fig. 4. Structural superposition of 
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Fig. 3. Top five models predicted by I-TASSER 

 
 

superposition of methylthioadenosine nucleosidase protein with model 1 
(2qttA from PDB) 
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with model 1 



 
Fig. 5. Protein ligand interaction of Methylthioadenosine Nucleosidase enzyme

 

4. CONCLUSION 
 
This study has helped in understanding the 
structural analysis of the Methylthioadenosine 
Nucleosidase Protein Zm00014a_031618 (
mays). Model 1 with a C-score of 1.03 is 
considered to be the best model as it has the 
highest score in comparison to the 
remaining four models. So, the Methylthio
adenosine Nucleosidase protein structure was 
compared with model 1 (2qttA from PDB) since it 
has the highest C score as the best model.
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