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Abstract 

 
Median as a measure of location gives a more robust estimate than the mean when dealing with heavy tailed 

or skewed distributions. It can also be used in cases of qualitative variables and open end intervals. 

Calibration, an approach that adjusts the original design weight by incorporating auxiliary information is 

employed using the chi square distance measure on a ratio median estimator under stratified random sampling 

to propose some estimators of population median. These proposed estimators are: the regression and ratio-

type calibrated estimators with one constraint and the regression and ratio-type calibrated estimators with two 

constraints. The estimators of variance of these proposed estimators are also obtained. Empirical 

investigations on the performance of these estimators are carried out using R software simulated data set 

under underlying distributional assumptions of Cauchy and Lognormal, for sample sizes of 10%, 20% and 

25%. The results showed that the proposed regression and ratio-type calibrated estimators with one constraint 

and the regression-type calibrated estimator with two constraints were more efficient than the existing ratio 

estimator and the proposed ratio-type calibrated estimator under two constraints for both Cauchy and the 

lognormal distributions. 
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Keywords: Median; calibration; ratio-type estimator; regression-type estimator; stratified random sampling; 

auxiliary variables etc. 

 

1 Introduction  
 

The median is a commonly used measure of properties of a data set in statistics and is most times regarded as a 

more appropriate measure of location than the mean because it is not skewed so much by small proportions of 

extremely large or small values and so may give a better idea of a typical value. Auxiliary variables provide 

more efficient estimators through the relationship that exist with the study variable. Whenever there is auxiliary 

information available, the investigator may want to use it in the method of estimation through either the ratio, 

product or regression estimators to obtain more efficient results. Calibration was first introduced by Deville and 

Sarndal [1] as a technique for minimizing a distance measure between an initial weight and a calibrated weight 

subject to a single calibration constraint. Also, Singh and Arnab [2] obtained a calibrated mean estimator using 

two constraints. The second constraint confirmed that the sum of calibrated weight was equal to the sum of 

design weight. Some other key references on calibration include: Clement and Enang [3], Heldal [4], Kayuncu 

and Kadilar [5, 6], Kim and Park [7], Sandeep [8], Mouhamed, El-Sheik, and Mouhamed. [9] etc 

 

 In stratified random sampling, calibration approach is used to adjust the strata weight for improving the 

precision of survey estimates of population parameters. Kuk and Mak [10] proposed a ratio estimator for 

population median in simple random sampling which was a modification of the ratio estimator for mean 

alongside with two other estimators derived from different approaches. Aladag and Cingi [11] motivated by Kuk 

and Mak, suggested ratio median estimators in stratified random sampling. They also dealt with the estimation 

of population median in simple and stratified random sampling using auxiliary information such as mode, range 

and correlation coefficient. In existing literature, authors like: Aamir, Shabri, and Isaq [12], Baig, Masood and 

Tarray [13], Enang, Etuk, Ekpenyong and Akpan [14], Garcia and Cebrian [15],  Gross [16], Jhaji and Bhangu 

[17], Meeden [18], Price [19],  Sharma [20], Singh and Joarder [21],  Singh, Singh and Martinez [22], Singh, 

Singh and Upadhyaya [23], Singh and Solanki [24], Solanki and Singh [25], Tracy, Singh and Arnab [26], have 

provided modification to the sample median estimator. Though, these proposed estimators are improvement 

over existing median estimators, no effort has yet been made to developing a median estimator using calibration 

approach.  

 

In this study,   new median estimators are developed using the approach of calibration under single and double 

constraints. 

 

2 Existing median estimators in stratified random sampling 
 

Let 
1 2( , ,... )NU U U U be a finite population of size N,  Y be the study variable and X the auxiliary variable 

associated with each unit ,( 1,2,3... )iU i N of the population. 

 

Suppose the population consist of H strata with ,( 1,2,3... )hN h H  units in the 
thh stratum such that

1

H

h

h

N N


 . A simple random sample without replacement of size 
hn  is drawn from the 

thh population 

stratum
hN

,
 such that

1

H

h

h

n n


 . Let 
hiy be the characteristic of interest for the 

thi element in the 
thh  stratum 

and 
hix be the auxiliary information for the 

thi element in the 
thh stratum. 

 

Assuming that 
hxM and 

hyM are population medians in the 
thh stratum for both the auxiliary and the study 

variable, 
hxm  and 

hym are respective sample medians, 
hX hYM M is the correlation coefficient in the 

thh stratum 

between sampling distributions of 
hxM  and 

hyM which is defined as 
11

4 1
hX hYM M hp    and 

11hp  is the 
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proportion of units in the 
thh stratum of the population with 

h hyY M and 
h hxX M .  Let 

1

H

x h hx

h

M W M


  and 
1

H

y h hy

h

M W M


 be the population weighted medians, 
1

H

xst h hx

h

m W m


 and

1

H

yst h hy

h

m W m


 be the sample weighted medians for X and Y respectively.  

 

 

Aladag and Cingi (2015) proposed a separate ratio median estimator under stratified random sampling as: 

 

1

1

H
hy

YR h hx

h hx

m
M W M

m





          (1) 

with: 

 

 2
1

1

( )
hx hx hy hy hx

H

YR h h hy M M M M M

h

Bias M W M C C C 




 
     (2) 

 
and variance 

 

2 2 2 2

1

1

( ) ( 2 )
hy hx hx hy hy hx

H

YR h h hy M M M M M M

h

V M W M C C C C 




       (3) 

 

Where, 

 

(1 )

4

h
h

h

f

n



  

2
2 ( )

hyM hy hy hyC M F M


     

 
22 ( )

hxM hx hx hxC M F M


  

 

( )hx hxF M and ( )hy hyF M are the distribution functions of the auxiliary and the study variables X and Y 

respectively. 

 

2.1 The proposed calibrated ratio estimators under one constraint 
 

Motivated by Kuk and Mak [14] and Aladag and Cingi [1], a new ratio median estimator under one constraint is 

given as: 

 

1 1

1

H
hy

YRC h hx

h hx

m
M W M

m







        (4) 

 

 With 
1hW 

 (calibrated weight) is obtained such that a chi square distance measure of the form: 

 

2

1

1

( )

2

H
h h

h h h

W W

W q








         (5) 
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is minimized subject to a single constraint:  

 

1

1

H

h hx x

h

W m M




         (6)

 

 

Where 
1hW 

 is the calibrated weight, 
hq  are positive weights uncorrelated with 

1hW 
, called the tuning parameter 

and 
hW  is the initial design weight. 

 

Minimizing (5) subjected to (6) gives the calibrated weight as: 

 

1
2 1

1

( )
H

h h hx
h h x h hxH

h
h h hx

h

W q m
W W M W m

W q m







  


      (7) 

 

Substituting (7) into (4) gives  

 

1
1

21 1

1

( )

H

h h hy hxH H
h hy hx h

YRC x h hxH
h hhx

h h hx

h

W q m M
W m M

M M W m
m

W q m




 



  


 


    

(8)

 

 

Equation (8) can be written in form of a generalized regression (GREG) estimator as: 

 

1 .1( )YRC YR st x xstM M M m
  

          (9) 

 

Where 
1

H
h hy hx

YR

h hx

W m M
M

m





  is the estimator in (1), 
1

H

xst h hx

h

m W m


 is the estimator of the auxiliary 

variable 
xM and 

1
.1

2

1

H

h h hy hx

h
st H

h h hx

h

W q m M

W q m












 

 

By letting 1hq  , equation (8) gives  

 

1
11

21 1

1

( )

H

h hy hxH H
h hy hx h

YRC x h hxH
h hhx

h hx

h

W m M
W m M

M M W m
m

W m




 



  


 


    (10) 

 

which is the proposed regression-type calibrated estimator of the population median 
yM in stratified random 

sampling under single constraint. 
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Also, letting 
1

,h

hx

q
m

  equation (8) becomes the proposed ratio-type calibrated estimator of the population 

median 
yM  in stratified random sampling under single constraint i.e 

 

1
12

1 1

1

( )

H
h hy hx

H H
h hy hx h hx

YRC x h hxH
h hhx

h hx

h

W m M

W m M m
M M W m

m
W m




 



  


 


    (11) 

 

2.2 Bias and variance estimators of the proposed calibrated estimators under one 

constraint 
 

Let hx hx
hx

hx

m M
e

M


 , and 

hy hy

hy

hy

m M
e

M


       (12) 

 

Where ( ) ( ) 0hx hyE e E e 
 

 
2 2( )

hxhx h ME e C  

2 2( )
hyhy h ME e C  

( )
hx hy hx hyhx hy h M M M ME e e C C   

Such that (1 )hx hx hxm M e  and (1 )hy hy hym M e        (13) 

 

 
(1 )

4

h
h

h

f

n



  and 

11
4 1

hX hYM M hp   ,  

 

11hp  is the proportion of units in the 
thh stratum of the population with 

h hyY M and 
h hxX M .   

 

Expressing  (4) in terms of the ‘e’ terms  in (13) above, we obtain 

 

1
1 1

1

(1 )(1 )
H

YRC h hy hy hx

h

M W M e e


 



           (14)  

 

Assuming 
1hxe 

 , the Taylor series expansion on 
1(1 )hxe 

 is obtained. By substituting, multiplying out 

and ignoring terms with x ye e
 of higher order than two, we obtain: 

 

2
1 1

1

(1 )
H

YRC h hy hy hx hx hy hx

h

M W M e e e e e






           (15) 

 

2
1 1

1

( ) ( )
H

YRC Y h hy hy hx hx hy hx

h

M M W M e e e e e






          (16) 

 

Taking the expectation of both sides of (16) and using the results for the expectation of the ‘e’ terms above gives 

the bias to the first order of approximation as: 
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2
1 1 1

1

( ) ( ) ( )
H

YRC YRC y h hy hy hx hx hy hx

h

Bias M E M M W M E e e e e e
 





     
 

 

2
1 1

1

( ) ( )
hx hy hx hx hy

H

YRC h hy h M M M M M

h

Bias M W M C C C 






       (17) 

 

Squaring both sides of (16) , taking its expectation, substituting the  results of the e terms above and retaining 

terms to the second degree, gives the variance to the first order of approximation as: 

 

2 2 2 2 2
1 1 1

1

( ) ( ) ( ) ( 2 )
hy hx hx hy hx hy

H

YRC YRCT Y h hy h M M M M M M

h

V M E M M W M C C C C 
 





    
 (18) 

 

And variance estimator: 

 

 or

2 2
2 2

1 1

1

( ) ( ) ( 2 )
hy hx hx hy hx hy

H

YRCT M M M M M Mh hy h

h

V M W m C C C C 
      





  

2
2 2 2 1

1 1

1

( ) ( ) ( ( )) ( ( )) 2 ( ( ) ( ))
hx hy

H

YRC hy m hx hyT M Mh h hy hx m hx hy

h

V M W F M R F M R F M F M 
       

   



 
   

 


   

 (19) 

Where, 

 

hy
m

hx

m
R

m





          (20) 

 

hx hyM M


= the correlation coefficient in the hth stratum sample between the sampling distributions of mhx and mhy 

 
22

( )
hyM hy hyC m F M


  

  
           (21) 

 
22

( )
hxM hx hxC m F M


  

  
           (22) 

 

1

1

1

1

( )

( )

h

h

n

hi hy hi

i
hy hy n

hi

i

M Y

F M














 





         (23) 

 
1

1

1

1

( )

( )

h

h

n

hi hx hi

i
hx hx n

hi

i

M X

F M














 





         (24) 

 

h
hi

h

n

N
   is the inclusion probability for the 

thi  element in the 
thh  stratum and 1, 0

( ) 0,

x

x elsewhere

 
 

 

Now substituting for the calibrated weight from (7) we obtain: 
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2

2

1
2 1

1

( ) ( )
H

h h hx
h h x h hxH

h
h h hx

h

W q m
W W M W m

W q m







 
 
   
 
  




       (25) 

 

Setting 1hq  , we obtain 

 
2

2

11
2 1

1

( ) ( )
H

h hx
h h x h hxH

h
h hx

h

W m
W W M W m

W m







 
 
   
 
  




        (26) 

 

Also, setting 

1
h

hx

q
m


 we obtain  

 
2

2

12

1

( ) h x
h H

h hx

h

W M
W

W m





 
 
 
 
 
 


         (27) 

 

Substituting (26) into (19), we obtain the variance estimator for Regression-type Ratio calibrated estimator 

under one constraint as: 

 
2

2
2 2

11

21 1

1

( ) ( ) ( ( )) ( ( ))
H H

h hx
YRC hy m hxT h x h hx h hy hxH

h h
h hx

h

W m
V M W M W m F M R F M

W m


    

 

 



 
  
    
  
 
 

 


12 ( ( ) ( )) )m hy MhxMhyhx hx hyR F M F M 
   







       (28) 

 

Also, putting (27) into (19), we obtain the variance estimator for the ratio-type calibrated estimator under one 

constraint as: 

 
2

2
2 2 2

12 1

1

1

( ) ( ) ( ( )) ( ( ))
H

h x
YRC YRC hy m hxT Y h hy hxH

h
h hx

h

W M
V M E M M F M R F M

W m


     

 





 
  
    
  
 
 




 

 

12 ( ( ) ( )) )m hy MhxMhyhx hx hyR F M F M 
   





        (29) 

 

2.3 The proposed calibrated ratio estimators under two constraints 
 

Motivated by Singh & Arnab [15], a new median estimator is also obtained using calibration under two 

constraints as: 

 

2
2

1

H
h hy hx

YRC

h hx

W m M
M

m







         (30) 
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where
2hW 

are calibrated weights chosen to minimize the chi-square distance measure:  

 
2

2

1

( )

2

H
h h

h h h

W W

W q






          (31) 

 

Subject to two constraints: 

 

2

1 1

H H

h h

h h

W W

 

           (32) 

 

2

1

H

h hx x

h

W m M



          (33) 

 

The calibrated weights under two constraints are obtained by minimizing (31) subject to (32) and (33) as: 

 

1 1
2

2 2 1

1 1 1

( ) ( )

( )

( )( ) ( )

H H

h h hx h h h h h h hx H
h h

h h x h hxH H H
h

h h hx h h h h hx

h h h

W q m W q W q W q m

W W M W m

W q m W q W q m

  



  



  



 


  

    (34) 

 

Substituting (34) into (30) gives: 

 

1 1 1 1
2

2 21

1 1 1

( )( ) ( )( )

( )( ) ( )

H H H H
h h hx hy hx h h hy hx

h h h h hxH
h hy hx h h h hhx hx

YRC
H H H

h hx
h h hx h h h h hx

h h h

W q m m M W q m M
W q W q m

W m M m m
M

m
W q m W q W q m


   



  



 



   


  
                 (35) 

1

H

x h hx

h

M W m


 
 

 
        

 

Equation (35) can be written in the form of the generalized regression (GREG) estimator as: 

 

2 .2

1

( )
H

YRC YR st x h hx

h

M M M W m
  



   .       (36) 

Where, 

  

1 1 1 1

.2
2 2

1 1 1

( )( ) ( )( )

( )( ) ( )

H H H H
h h hx hy hx h h hy hx

h h h h hx

h h h hhx hx
st H H H

h h hx h h h h hx

h h h

W q m m M W q m M
W q W q m

m m

W q m W q W q m




   

  







   

  

 

and 

1

H
h hy hx

YR

h hx

W m m
M

m





 .  

 

Substituting 1hq 
 
in (35) gives the proposed regression-type calibrated estimator of the population median in 

stratified random sampling under two constraints as. 
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1 1 1 1
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h h hxH
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m
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
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

  



 



   


  
1

H

x h hx

h

M W m


 
 

 


     (37) 

Also by letting 
1

h

hx

q
m

  in (35), we have the proposed ratio-type calibrated estimator of the population 

median in stratified random sampling under two constraints as: 

 

2
1 1 1 1

22

21

1 1 1

( )( ) ( )( )

( )( ) ( )

H H H H
h hy hx hyh

h hx hH
h hy hx h h h hhx hx hx
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h hhx
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Wm
W m W

m


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

  



 



   


  
1

H

x h hx

h

M W m


 
 

 


 (38) 

 

2.4 Bias and variance estimators of the proposed calibrated estimators under two 

constraints 
 

The bias and variance estimators of the proposed calibrated ratio median estimators under two constraints, are 

also obtained using same procedure of Taylor Linearization Technique as used under one constrain . Only the 

calibrated weight is changed   We have: 

 

2
2 2

1

( ) ( )
hx hy hx hx hy

H

YRC h hy h M M M M M

h

Bias M W M C C C 






 
    (39) 

 

And 

 
2

2 2 2 1
2 2

1

( ) ( ) ( ( )) ( ( )) 2 ( ( ) ( ))
hx hy

H

YRC hy m hx hyT M Mh h hy hx hx m hx hy

h

V M W F M R F M R F M F M 
       

   



 
   

 


  (40) 

Where , 

 

1 1
2

2 2 1

1 1 1
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( )( ) ( )
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h h hx h h h h h h hx H
h h

h h x h hxH H H
h

h h hx h h h h hx
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
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

  



 


  
                 (41) 

is the calibrated weight for  two constraints as stated in (34) 

Setting 1hq  , we obtain: 

 

1 1
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2 2 1
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
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    (42) 

 

Also setting 
1

h

hx

q
m

 , we obtain: 
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1 1
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
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      (43) 

 

Substituting (42) and (43) into (40), gives the regression and the ratio-type variance estimators under two 

constraints as: 

 


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And 

 


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3 Empirical Evaluation of Estimators 

 

The performance of the proposed calibrated Ratio estimators shall be compared with the existing ratio estimator 

using two performance measures namely: Percentage Relative Efficiency and the Percentage Absolute Relative 

Bias. 

 

By the percentage relative efficiency of two estimators, we mean the percentage ratio of their variances or mean 

square errors. It can be computed as: 

 

0
0

( )
( ) 100

( )
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YRC
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MSE M
RE M

MSE M






 
  
 
 

       (46) 

 

Also, given the calibration estimator YRCM


,  the percentage absolute relative bias with respect to the population 

median 
yM
 
is given as: 

 

1

1
% ( ) ( 1)

R
YRC

YRC

r y

M
ARB M

R M






  x 100       (47) 

 

3.1 Simulation study 
 

A simulation study using R software was done on the estimators for different sample sizes, with distributional 

assumptions of Cauchy and lognormal distributions. 
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For each sample of size 0 0
0 0(10 ),(20 ) and 0

0(25 )
, 

selected in each simulation run r=1,2,3…R ,  (R=10,000), 

the estimates of YRCM


and YRM


 was computed.  

 

Suppose 

r

YRCM


 and 

r

YRM


denotes the proposed and existing estimator respectively for the 
thr run, r=1,2…R, 

then the mean square error for both estimators was also computed as  

 

2
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1
( ) ( )

rR

YRC YRC y

r

MSE M M M
R

 


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2

1

1
( ) ( )

rR

YR YR y

r

MSE M M M
R

 



         (49) 

 

4 Discussion of results 
 

Tables 1 and 2 below, shows the percentage absolute relative bias (%ARB) and the percentage relative 

efficiency (%RE) with one and two constraints for Cauchy distribution, and lognormal distributions using 

sample sizes of 10%, 20% and 25% respectively. 
 

From Table 1, under the Cauchy distribution, the ratio-type estimator with one constraint 12YRCM


has the 

smallest %ARB of 95.6 to 102.0 as sample size increases from 10% to 25%, followed by the regression-type 

estimator with two constraints 21YRCM


with a fluctuated %ARB of 5045.7 at 10% sample size and  a decrease of 

1263.8 to 1109.1 as sample size increased from 20% to 25% and the regression-type estimator with one 

constraint 11YRCM


 having a  %ARB of 1169.5 to 2435.0 as sample size increased from 10% to 25% .Whereas, 

the existing estimator YRM


and the proposed ratio-type estimator with two constraints 22YRCM


have very high 

%ARB of 1538.5 to 3277.7 and 5401.6 to 10706.9 respectively as sample size increased from 10% to 

25%.Under the lognormal distribution, the regression-type estimator with two constraints 21YRCM


has the smallest 

%ARB of 1358.1 to 874.4 which decreased as sample size increased from 10% to 25% followed by the ratio and 

the regression-type estimators with one constraint 12YRCM


 and 11YRCM


 having %ARB of 1444.5 to 896.9 and 

1713.4 to 1030.3 respectively which decreased as sample sizes increased from 10% to 25%. The existing Ratio 

estimator YRM


and the proposed ratio- type estimator with two constraints 22YRCM


still having high %ARB of 

1724.0 to 1149.6 and 12502.6 to 1457.2 respectively as sample size increased.  

Table 2, under the Cauchy distribution, shows that the proposed regression and ratio-type estimators with one 

constraint 11YRCM


 and 12YRCM


, and the regression-type estimator with two constraints 21YRCM


have high 

gains in efficiency of 173.0 to 181.2, 24605.9 to 103343.0 and 579.2 to 872.9 respectively as the sample size 

increased ( with an initial loss of 9.3% at 10% sample size for the regression-type estimator with two constraints

21YRCM


) than the existing estimator YRM


. Whereas, the ratio -type estimator with two constraints 22YRCM


 

has a loss ranging from  8.1 to 9.9 as sample size increased from 10% to 25%. 

Under the lognormal distribution, the regression and the ratio-type estimators with one constraint 11YRCM


 and 

12YRCM


and the regression-type estimator with two constraints 21YRCM


gained efficiencies ranging from 101.2 

to 124.5, 142.4 to 164.3 and 161.2 to 174.3 respectively as sample increased from 10% to 25% than the existing 
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estimator YRM


 , while the proposed ratio-type estimator with two constraints 22YRCM


 has a loss of 1.9 to 62.2 

as sample size increased from 10% to 25% 

 

Table 1. Percentage Absolute Relative Bias for Cauchy and Lognormal Distributions Under one and Two 

Constraints 

 

  
Existing 

Estimator 

One Constraint Two Constraints 

Sample  

Sizes 

Distribution 
YRM



 

11YRCM


 

12YRCM


 

21YRCM


 

22YRCM


 

10%   Cauchy 1538.5 1169.5 98.1 5045.7 5401.6 

 Lognormal 1724.0 1713.4 1444.5 1358.1 12502.6 

20%   Cauchy 3041.6 2351.1 95.6 1263.8 10706.9 

   Lognormal 1222.3 1118.2 957.1 925.7 4603.8 

25%   Cauchy 3277.7 2435.0 102.0 1109.1 10408.0 

 Lognormal 1149.6 1030.3 896.9 874.4 1457.2 
 

Table 2. Percentage Relative Efficiency for Cauchy, and Lognormal Distributions Under One and Two 

Constraints 

 

  
Existing 

Estimator 

One Constraint Two Constraints 

Sample Sizes Distributions 
YRM



 

11YRCM


 

12YRCM


 

21YRCM


 

22YRCM


 10% Cauchy 100 173.0 24605.9 9.3 8.1 

 Lognormal 100 101.2 142.4 161.2 1.9 

20% Cauchy 100 167.4 101168.6 579.2 8.1 

 Lognormal 100 119.5 163.0 174.3 7.0 

       

25% Cauchy 100 181.2 103343.0 872.9 9.9 

 Lognormal 100 124.5 164.3 172.9 62.2 

 

5 Conclusion 
 

In this paper, four ratio median estimators (the regression-type estimator under one constraint 11YRCM


, the ratio-

type estimator under one constraint
12YRCM

 , the regression-type estimator under two constraints 21YRCM


and the 

ratio-type estimator under two constraints
22YRCM

 ) were introduced using calibration for both single and 

double constraints under stratified random sampling. Also, their biases and variance estimators were obtained 

using Taylor Linearization. 

 

Following the discussion of results above, we deduce that under the Cauchy and lognormal distributions which 

are strictly heavy tailed, the proposed regression and ratio-type estimators with one constraint 11YRCM


, 12YRCM


 and 

the regression-type estimator with two constraints 21YRCM


 are more efficient than the existing ratio estimator YRM

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and the proposed ratio-type estimator under two constraints 
12YRCM

 . This work obviously shows that though one of 

the proposed estimators under two constraints (the ratio-type estimator under two constraints 22YRCM
  ) is bad, the 

other three proposed estimators work better for real life data that follow a skewed or heavy tailed distributions 

like the Cauchy and lognormal distributions.  This agrees with the already known fact that robust statistics have 

good performance for data drawn from distributions that are skewed and generally supports the results of 

Deville and Sarndal [16] that there is gain in efficiency for calibrations.  

 

Competing Interests 
 

Authors have declared that no competing interests exist. 

 

References 

 

[1] Deville J.C, Sarndal CE. Calibration Estimators in Survey Sampling. Journal of the American Statistical 

Association. 1992;87(418):376-382 

 

[2] Singh S, Arnab R. On Calibration of Designs Weight. Metron-International Journal of Statistics, 

2014;69(2):185-205 

[3] Clement, E.P, Enang E.I. Calibration Approach Alternative Ratio Estimator for population Mean in 

Stratified Random Sampling. International Journal of Statistics and Economics. 2015, 16(1),0973-7022. 

 

[4] Heldal J. A Method for Calibration of weights in Survey Sampling. Central Bureau of Statistics Norway. 

1992, 3:1-18 

 

[5] Kayuncu N, Kadilar C. Calibration Estimator using different Distance Measure in Stratified Random 

Sampling. Int J Mod Eng Res. 2013;3(1):415-9. 

 

[6] Kayuncu N, Kadilar C. Calibration Weighting in Stratified Random sampling. Communication in 

Statistics-Simulation and Computation; 2017.  

Available: https://dx.doi.org/10.1080/03610918.2014.901354 

 

[7] Kim JK, Park M. Calibration Estimation in Survey Sampling. International Statistical Institute. 78(1), 21-

39. 

 

[8] Sandeep K. Calibration Approach Based Estimators of Finite Population Mean in two-stage Stratified 

Random Sampling. International Journal of Current Microbiology and Applied Sciences, 7(1), 1808-

1815. 

 

[9] Mouhamed AM, El-sheik A, Mouhamed H A. A New Calibration Estimator of Stratified Random 

Sampling. Applied Mathematical Sciences. 2015;35(9):1735-44. 

 

[10] Kuk AYC, Mak TK. Median Estimation in the presence of Auxiliary Information. Journal of the Royal 

Statistical Society B. 1989;51:261-269.

 

 

 

[11] Aladag S,  Cingi H. Improvement in Estimating the population Median in Simple Random Sampling and 

Stratified Random Sampling using Auxiliary Information. Communications in Statistics-Theory and 

Methods. 2015;44(5):1013-1032. 

 

[12] Aamir M, Shabri A,  Ishaq M. Improvement on Estimating Median for Finite Population using Auxiliary 

variables in Double- Sampling. Journal Teknologi. 2018;80(5):135-43.  

 

[13] Baig A, Masood S,  Tarray TA. Improved Class of Difference-type Estimators for Population median in 

Survey Sampling. Communication in Stat- Theory and Methods. 2019;47(24):1-16. 

https://dx.doi.org/10.1080/03610918.2014.901354


 

 
 

 

Agbebia and Enang; Asian J. Prob. Stat., vol. 21, no. 4, pp. 64-77, 2023; Article no.AJPAS.97063 
 

 

 
77 

 

[14] Enang E, Etuk S, Ekpenyong ET, Akpan VM. An alternative Exponential Estimator of Population 

Median. Int J Stat Econ. 2016;17(3):0973-7022. 

 

[15] Garcia MR, Cebrian AA. On estimating the median from survey data using Multiple Auxiliary 

Information. Metrika. 2001; 54: 59-76  

 

[16] Gross ST. Median Estimation in sample surveys. Preceedings of the survey research methods section. 

American Statistical Association. 1980; 181-184. 

 

[17] Jhaji HS, Bhangu HK. Generalized Estimators of population median using auxiliary information. Int J Sci 

Eng Research. 2013;4(11):229-551. 

 

[18] Meeden G. Median estimation using auxiliary information. Survey Methodology. 1995;21:71-77. 

 

[19] Price RM, Bonett DG. Estimating the variance of the sample median. Journal of Statistical Computing  

and Simulation. 2014;68(3):295-305. doi: 10.1080/00949650108812071. 

 

[20] Sharma P, Singh R. Generalized class of estimators for population median using auxiliary information. 

Hacettepe J Math Stat. 2015;44(22):443-53. 

 

[21] Singh S, Joarder AH, Tracy DS. Median Estimation using Double Sampling. Australian & New Zealand 

Journal of Statistics. 2001;43:33-46 

 
 

[22] Singh HP, Singh S, Martinez S. Ratio-type Estimators of the Median of Finite population . Allgemeines 

Statistisches Archiv, 2003 87 369-382 

 

[23] Singh SS, Singh HP, Upadhyaya LN. Chain ratio and regression-type estimators for median estimation 

survey sampling. Stat Pap. 2006;48:23-46. 

 

[24] Singh HP, Solanki RS. Some Class of Estimators for Population Median using Auxiliary information. 

Commun Stat. 2013;42(23):4222-38. 

 

[25] Solanki RS, Singh HP. Some classes of estimators for median estimation in survey sampling. 

Communication in Stat -Theory Methods. 2015;44(7):1450-65.  

 

[26] Tracy DS, Singh S, Arnab R. usefulness of Robust Estimators in sample Survey. Communication in 

Statistics-Theory and Methods. 1982;11(22), 2597-2610. 

__________________________________________________________________________________________ 
© 2023 Agbebia and Enang; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited. 

 

 

 
 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle5.com/review-history/97063 

http://creativecommons.org/licenses/by/3.0

