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Abstract 
 

Adequate prediction of structures settlement is of utmost importance in order to prevent future failure of 
civil engineering structures due to excessive settlement resulting from an inadequate settlement 
prediction. In this paper, laboratory consolidation test was performed on five different clay samples from 
different locations to determine the soil consolidation in terms of pore water pressure. A formulation of 
Finite Element (FE) method was also developed for solving one-dimensional consolidation problem and 
its validity checked out. The one-dimensional consolidation differential equation was solved using finite 
element analysis by Rayleigh-Ritz method to obtain an approximate solution and ten elements were used 
to discretize the domain. MATLAB program was used to write the finite element codes. Considering the 
graphs generated from the MATLAB program which compares the consolidation behavior of the soil 
sample from analytical and numerical point of view, it is seen that there is a good agreement between 
Terzaghi’s exact solution to consolidation behavior of soils and numerical solution using the finite 
element method. 
 

 
Keywords: Consolidation; one-dimensional; Terzaghi’s solution; finite element method; MATLAB. 
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1 Introduction 
 
The increase rate of failures of civil engineering structures in Nigeria, has made it necessary to study the 
settlement of structures, especially within the southern part of Nigeria. The area is made up of reclaimed 
lands, composed of compressible weak organic and soft soils. The construction of structures like high rise 
buildings or embankments on compressible soils having high water table often leads to failures. It becomes 
imperative to understand, the consolidation characteristics of such soils in order to provide remedial measure 
[1]. The deformation and dissipation of pore fluids in a loaded soil medium is known as consolidation [2-3]. 
The consolidation problem of soil has close relation with the deformation, strength, stability, and seepage of 
soil mechanics [4]. The consolidation in soil is largely caused by change in the effective stress, resulting 
from a decrease in pore pressure or increase in total stress. Karl von Terzaghi was among the first to develop 
an analytical theory to explain and predict the process in fine-grained soils [5]. Terzaghi’s one-dimensional 
(1D) consolidation theory for saturated soils, assumed that the stress-strain relationship of soil is linear in 
order to simplify the solution for practical use [6] and that the process of primary consolidation of a fully 
saturated soil is due to the dissipation of excess pore water pressure from the soil as a result of gradual 
transition of applied load from water to the soil particles. Under various assumptions, consolidation in a 
semi-infinite soil mass can be approximated as one-dimensional [7]. This approximation provides useful 
engineering solutions for many practical situations such as vertical settlements of foundations and 
embankments. The finite element method has been used by several researchers [8-15] in solving 
consolidation problems of elastic material. A finite element formulation based on the one-dimensional 
idealization was developed herein to provide acceptable solutions with simplicity and economy of 
computational and formulation efforts. In other word, by using computer-implemented mathematical 
models, one can simulate and analyze complicated one dimensional consolidation problems. This reduces 
the need for expensive and time-consuming experimental testing and makes it possible to compare many 
different alternatives for optimization. The results obtained from the finite element method were compared 
with Terzaghi analytical model for one dimensional soil consolidation. 

 

2 One-Dimensional Consolidation Differential Equation 
 
The basic differential equation of one-dimensional consolidation is as shown below: 
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Where ��  is the coefficient of consolidation and is given by: 
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The basic differential equation of one-dimensional consolidation given in eqn. (1) gives the distribution of 
excess hydrostatic pressure  � with depth z and time t. The analytical solution of eqn. (1) is obtained by 
Fourier series and the exact solution presented as follows: 
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In this exact solution equation obtained by Fourier series, z and H represents thickness of soil and drainage 
path respectively. This equation can be generally applied to any soil of initial pore water pressure �� (Arora, 
2008). 
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3  Finite Element Solution to One-Dimensional Consolidation 
Differential Equation 

 
Finite Element solution to one-dimensional consolidation starts from declaring the differential equation 
governing it. The basic differential equation of one-dimensional consolidation is given as: 
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The weak form of equation (4) is obtained by multiplying it by a weight function W and then integrated over 
the domain of the problem. 
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Integrating by parts, we obtain 
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Where the domain of the problem is between Ax  and Bx
 

 
We assume an approximate solution given by the form: 
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Where ju denote the value of ( , )u z t  at the spatial location ( jz ) and time t. And j is the interpolation 

function used for the approximation (shape function). The semi discrete model used is obtained from 
equation (7) by substituting the finite element approximation equation (8) into equation (7) and substituting 

the weight function W with i . 
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Where      
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In matrix form, we have: 

 

     e e e e e
ij ijM u k u Q                                                                             (11) 

  
Where     
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Linear Lagrange Interpolation function is used as given in lower coordinate below 
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The derivative of the interpolation function with respect to z are as follows: 
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From equation (12), the coefficient matrix 
e
ijM for an element “e” is evaluated  

for 1i  and 1j  
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Where h is the domain of an element 
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Similar computation is done for M12, M21 and M22 

 

For M12 we have  
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Similarly, ijK
 
is evaluated from equation (13) 

 

for 1i   and 1j
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Similar computation is done for 21K  and 22K  and the following values shown in matrix form are obtained. 
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For the manual finite element analysis, 8 linear elements will be used to discretize the domain. 
 

 
 

Fig. 1. Eight element discretization 
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Using 8 elements produce nine nodes. 

 
Equation (11) can be rewritten for one element as shown 
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The assembled equation for eight elements is given as 
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To solve equation (38), we use  - family of approximation given  
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Where    

 

eM    is the assembled ijM  matrix  

    

eK    is the assembled ijK  matrix 
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The boundary condition of equation (1) is  
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And the initial condition is  
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 ,0zu   100 kPa                                                                                                    (41) 

 
Due to balance of flux at the connecting nodes in equation (38) 
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After applying boundary condition to equation (38), we obtain:  
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Using the following soil parameters for sample 1 

 

soil permeability, 56 .2 8 1 0K   m/s 

coefficient of volume compressibility, 
4 25.6 10 /vm m kN   

unit weight of water, 
39.81 /w kN m   

soil depth, 7z m  

modulus of elasticity, 21 .8 /E M N m  

0.5   

0.1t   

Using 8 elements discretization of the domain yields 
7

0.875
8

h  
 

 

Equation (29) becomes 

 

0.0016 0.0008

0.0008 0.0016
ijM

 
  
 

                                                         (45) 

 
And equation (36) becomes 

 

4 0.7173 0.7173
1 10

0.7173 0.7173
ijK   
                                                                   (46) 

Since h is used as constant of 0.875 for the elements, then  

 
1 2 3 N
ij ij ij ijK K K K                                                                         (47) 

 
1 2 3 N
ij ij ij ijM M M M                                                                        (48) 

 
Solving eqn. (44) using all stated parameters for the first iteration after 0.1 days, we obtain: 
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                                                                                                                      (49) 

 

Similar computations for second iteration with 0.2s   days yields: 
 

2

3

4

5

6

7

8 0.2

99.4165

100.1541

99.9569

100.0212

99.9569

100.1541

99.4165
s

u

u

u

u

u

u

u


   
   
   
   
   

   
   
   
   
   

  

                                                         (50) 

 
With the help of the MATLAB program, developed iterations of over 3000 can be achieved and also a 
higher number of discretization (say using 50 elements) can be done. Using 8 elements manual discretization 
and time step of 0.1 days with the program developed after 3000 iterations, the following result is gotten at 

300s da ys . 

 

2

3

4

5

6

7

8 300

20.4231

37.7296

49.2864

53.3429

49.2864

37.7296

20.4231
s

u

u

u

u

u

u

u


   
   
   
   
   

   
   
   
   
   

  

 

 

4 Results and Discussion 
 
Figs. 2, 3, 4, 5 and 6 show the plots of soil consolidation with depth from numerical solution and from 
Terzaghi’s solution (exact solution). These graphs show the soil consolidation in terms of pore water 
pressure after 1000 days (10,000 iterations) using 10 elements discretization of the domain for the five soil 
samples with different soil parameters.  

2

3

4

5

6

7

8 0.1

99.7071

100.0781

99.9779

100.0109

99.9779

100.0781

99.7071
s

u

u

u

u

u

u

u


   
   
   
   
   

   
   
   
   
   

  
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Fig. 2. Comparisons of soil consolidation along depth at time, t =1000 days (Location 1) 
 

 
 

Fig. 3. Comparisons of soil consolidation along depth at time, t =1000 days (Location 2) 
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Fig. 4. Comparisons of soil consolidation along depth at time, t =1000 days (Location 3) 
 

 
 

Fig. 5. Comparisons of soil consolidation along depth at time, t =1000 days (Location 4) 
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Fig. 6. Comparisons of soil consolidation along depth at time, t =1000 days (Location 5) 
 

5 Conclusion 
 
One-dimensional consolidation problem was solved successfully using the finite element method in this 
study and the program of the formulation written with MATLAB program. Considering the graphs generated 
from the MATLAB program which compares the consolidation behavior of the soil sample from analytical 
and numerical point of view, it is seen that there is a good agreement between Terzaghi’s exact solution to 
consolidation behavior of soils and numerical solution using the finite element method. 
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