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In this research, a proof of Beal’s conjecture is presented. A possible Pythagorean algebraic 
relationship between the terms of the conjecture problem will be proposed and used to arrive at the 
proof results. In the process of seeking the proof the solution of the congruent number problem 
through a family of cubic curves will be discussed.  
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INTRODUCTION     
 
Beal’s conjecture was formulated in 1993 by Andrew 
Beal, a banker and amateur mathematician while 
investigating generalizations of Fermat’s last theorem. 
The conjecture was formulated after some extensive 
computational experiments were conducted in August 
1993.  In some publications the conjecture has been 
occasionally referred to as the generalized Fermat’s last 
theorem (Mauldin, 1997), (Bennet et al, 2014) the 
Mauldin conjecture (puzzles, n.d.) and the Tijdeman-
Zagier conjecture (puzzles, n.d.)], (Waldschmidt, 2004), 
(Wikipedia, 2018).     
 
The conjecture states that:  
 

If
x y zA B C  , where A, B, C are positive integers and 

x, y and z are all positive integers greater 2, then A, B 
and C have a common prime factor.  
 
To prove the conjecture a Pythagorean algebraic 
relationship between the terms of the conjecture will be 

derived and used.  
 
An algebraic relationship between the terms of 
Pythagorean triples 
 
Consider some Pythagorean integer triples x, y and z 
related by the equation: 
 

2 2 2x y z                                                                    

(1)                                                                                                                       

If 

2

2

x
a

ay


                                                                 (2) 

 

And again 

2

2

x
a

az


                                                   (3)    
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Then by Equations 2 and 3  
 

z y a                                                                         (4) 

 

2x
z y

a
                                                                      (5) 

 

Multiplying Equations 5 and 4 together: 
 

2 2

2 2 2 2 2( )( ) ( ) ( )
2 2

x x
a a

a ax z y z y z y
 

         

2 2

2 2 2( ) ( )
2 2

x x
a a

a ax
 

                                           (6) 

 
A relationship has been established between the terms of 
a Pythagorean triple. Some forms of the above 
Pythagorean relationships were first discussed in a paper 
entitled simple algebraic proofs of Fermat’s last theorem 
(Buya, 2017a) 
 
 
Solution of the congruent number problem 
  
The technique used in proving Beal conjecture can be 
used to solve problems in number theory, arithmetic of 
elliptic of elliptic curves etc. (Elkies, 2007). An important 
problem in number theory that can be solved is the 
congruent number theory (Buya, 2017b). 
The results in section 2 can be used to solve the 
congruent number problem. If the perpendicular height of 
a right angled triangle is x then by equation 7 its base is

2

2

x
a

a


.    The area of a congruent triangle is given by: 

 
2

3 2

( )
4 4

x
a

x a xaA x
a




                                               (1) 

 
For the purpose of solution of the congruent number 
problem (a) is considered to be a rational number in this 
section.                                                                                           
Thus the family of curves of the cubic equation 

3 2

4

x a x
y

a


                                                                (2)  

has an infinite number of points for solution of the 
congruent number problem. In the function 2 above the y 
coordinate represents the area of a congruent number 
with (x) and (a) as rational numbers.  
Thus in the elliptic curve: 

 
 
 
 

2 3 2y x n x                                                                (3),  

where n is congruent number if n is of the form 
3 2

, , 0
4

b a b p
n a b p q N q

a q


        

Consider the elliptic curve 3. Making the congruent 
number (n) the subject of the equation we obtain the 
following: 
 

2
2 2 y y y

n x x x
x x x

  
      

  
                            (4) 

 
 
For n to be a congruent number take: 

2y
x a

x
                                                               (5) 

2
21

( )
4 2

y a b
x

bx


                                             (6) 

 
From Equations 5 and 6 
 

 
                                                                                      

(7)   

 

2 2
2 2 2 21 1 1 1

( ( ) )( ( ( ) ))
4 4 2 2 4 2

a b a b
y a a

b b

 
        (8) 

 
For a rational number on the elliptic curve 3 select 

rational numbers aand b  so that x is a square rational 

number. The family of cubic curves 2 can also be used to 
establish whether the elliptic curve 3 has or does not 
have a rational number.     
 
 
Proof of Beal’s conjecture  
 
Relationship between the terms of Beal’s conjecture  
 
In a paper entitled simple algebraic proofs of Fermat’s 
last theorem (Buya, 2017a) the author of this paper 
showed that there exists an algebraic relationship 
between the terms of Fermat’s Diophantine equation. The 
algebraic equations in the paper can be used to prove 
Beal conjecture. There exists an algebraic relationship 
between the terms of Beal’s conjecture problem. The 
proposed proof does not require any Galois 
representation or use of elliptic curves.     
 
Consider the equation given by:  

2
2 21 1

( ( ) )
2 4 2

a b
x a

b


 



 
 
 
 
 

, , 2x y zA B C x y z                                               (1) 

 
The terms of the Equation above are related in the 
following way:  
 

2

2 2 2
1

( ) ( ) ( )
2 2

x

x x
y

A a
a

Aa AB
a

 
                               (2) 

2

2 2 2
1

( ) ( ) ( )
2 2

x

x x
z

A a
a

Aa AC
a

 
                               (3) 

To prove the Beal’s conjecture, the cases  
 

,
x

x

A
a a m

m
                                                         (4)  

will be considered.  
 
Substituting 4 into 2 and 3: 
 

  

2
2 / 2/

1
( )

2

x

x
x y y

A

mB m


                                                (5) 

  

2
2 / 2/

1
( )

2

x

x
x z z

A

mC m


                                                (6) 

 
From Equation 4: 
 

1/

x x

x

A am

A a m

 


                                                                (7) 

 
Substituting 4, 5 and 6 into 1: 
 

2 2 2 2

2 2

( ) ( )

4 4

x x x x
x

x x

m am m am
am

m m

 
                          (8) 

 
For validity of Beal’s conjecture if: 
 

 
2

/ 2/

1
( )

2

x

x
x y y

A

mm u


                                                   (9) 
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2
/ 2/

1
( )

2

x

x
x z z

A

mm v


                                               (10) 

 
Substituting equations 9 and 10 into 5 and 6: 
 

/x yB m u                                                                    (11) 
/x zC m v                                                                    (12) 

 
The set of equations 7, 11 and 12 suggest that A, B and 
C at least share a common prime number validating 
Beal’s conjecture.  
 
Example 1  
 
In Equations 7, 11 and 12 if m = 16, x = 3 y = 4 z = 3 
then: 
 

 
 

3 3 4 3 4

3 4 3 4

16 16 16

16 ( ) 16

a u v

a u v

  

 
 

 
If we take v = 2, a = 8 and u

4
 = 8 we obtain the Equation:  

 
3 3 432 32 16   

 
The common prime factor in this case is 2.  
 
Example 2 
 
In Equations 7, 11 and 12 if m = 3, x = 6 y = 3 and z = 2 
then:  
 

6

6 3

8 2

6 3 8 2

3

3

3

3 ( ) 3

x

y

z

A a

B u

C v

a u v







 

 

 
If we take v = 1, a = 1 and u = 2 we end up getting the 
identity: 
 

6 3 83 18 3   

 
The common prime factor in this example is 3. Thus the 
above derived relationships show that whenever the 
powers of A, B and C are greater than 2 then the Beal’s  

 
2 2 2 2 22

2 2 2 2 2

2 2 2

1
( ) ( )

( ) ( ) ( ) ( )
2 2 2 4 4

x x

x x x x x xx
y x x

x x x

A A
a

m A m A m ama mB m m
m m m

 
  

     

2 2 22
2 2 2 2 2

2 2

1
( )

( ) ( ) ( ) ( ) ( )
2 2 2 4

x x

x x x xx
z x x

x x

A A
a

m A m ama mC m m
m m

 
 

    
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conjecture identity will always have a common prime 
factor shared by A, B and C. Thus, Beal’s conjecture is 
proved.  
 

To completely validate the conjecture other cases will be 
brought into consideration.   
The case x = y = z = 2 will be considered. This is to say 
we will consider the Pythagorean Diophantine equation.  
In such a case, the algebraic relationships between A, B 
and C is given by: 
 

2

2 2

2

1
( ) ^

2 2

A
a

A a AaB a A a r N
a A r


               (13)                                                                                                                                                           

 

Equation 13 can be further simplified.  
 

2

2

2

1 1
( ) ( 2)

2 2 2

A
a

AaB Ar r
r r


                              (14)                                                              

 
2

2 2
2

2 2

1 1 1
( ) ( ) ( 2)

2 2 2 2

A
a

A a AaC Ar r
a A r r


              (15)                                                          

 
Substituting 14 and 15 into 1: 
 

2 2

2 2 2

2 2 2 2 2 2 2

2 2

( ) ( )
2 2

1 1 1 1
( ) ( )
2 2

A A
a a

a aA

A A r A r
r r

 
 

   

                             (16)                                                           

Consider the algebraic fraction 

2 2

2

r

r


 of equation 14. If 

it has a form: 
 

2 2

2

r
N

r A





                                                       (17)                                                                

 
Then on substituting equation 17 into 14: 

B    

 
The number   may or may not be co-primed with A 

 

Consider the algebraic fraction 

2 2

2

r

r


 of equation 15. If 

it has a form: 
2 2

2

r

r A

N










                                                               (18) 

 
 
 
 
Then on substituting 18 into 15: 

C    

The number   may or may not be co-primed with A. The 

Beal’s conjecture is therefore not applicable to 
Pythagorean Diophantine equations.  
 
The case x = 3, y = z = 2 will be considered. 
 

Consider the general Diophantine equation: 
 

3 2 2A B C                                                                (19) 

 
The relationship between the terms of the above 
Equation will be considered. 
 

3/2

3/2 2

3/2

1
( )

2 2

A
a

A aaB
a A


                                              (20) 

 
3/2

3/2 2

3/2

1
( )

2 2

A
a

A aaC B
a A


                                    (21) 

 
If in Equations 21 and 22: 
 

2

3/2 3/2

1
( )
2

a a

A A


                                                        (22) 

2

3/2 3/2

1

2

,

a a

A A

N



 

 

 

                                                             (23) 

 

Then by the Equations 23 and 24: 
 

B C      

 

The number B   may or may not be co-primed with A. 

The number C   may or may not be co-primed with A. 

Thus Beal’s conjecture does not apply to the cases 
(     ) = (     ) and (     ) = (     ) 
 

The case (     ) = (     ) will be considered.  
In this case the relationship between A, B and C is given 
by the set of equations below: 
 

2

2 2

2
(1 )

2 2

A
a

A aaB
a A


                                                 (24) 

 
2

2 2
3/2

2

3 2
3/2

3/2 2

(1 )
2 2

(1 )
(2 )

A
a

A aaC
a A

A a
C

a A


   

 

                                          (25) 



 
 
 
 
 
If in Equations 24 and 25: 
 

2

2

2
1

a a

A A

N





 



                                                             (26) 

2 3/2
3/2

2 3

(2 )
(1 )

a a

A A

N





 



                                              (27) 

 
Then:  
 

B C      

 
In the case above C may or may not be co-primed to A. 
The Beal’s conjecture does not apply to the general case 
(     ) = (     ).  
 
From the above analysis we note that in cases where x, y 
and z are greater than two, A, B and C share a common 
prime number. Thus Beal’s conjecture is thus verified.  
 
 
Conclusion  
 
There exists an algebraic relationship connecting the 
terms of Beal’s conjecture problem. The algebraic 
relationship as stipulated in equations 7, 11 and 12 of 
section 4 shows that the terms A, B and C share a 
common prime factor for all x, y and z as positive integers 
greater than 2.  Thus Beal’s conjecture is proved.  
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