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Abstract

A graph G possess an H-covering when each edge in E(G) pertaining to a subgraph of G isomorphic to H.
This graph G is H-magic if there exists a total labeling f : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that for

each subgraph H
′

of G isomorphic to H,
∑

v∈V (H
′
)

f(v) +
∑

e∈E(H
′
)

f(e) = M is a constant. An H-E-super

magic graceful labeling (H-E-SMGL) is a bijective function f : V (G) ∪ E(G) → {1, 2, . . . , p + q} with
f(E(G)) = {1, 2, . . . , q} so that

∑
v∈V (H

′
)

f(v) −
∑

e∈E(H
′
)

f(e) = M for few positive integer M . Herein, we

examine the Cn-E-SMGL of some graphs.
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1 Introduction

All graphs considered in this article are finite, simple and undirected. The vertex set and edge set of a graph
G is represented as V (G) and E(G) correspondingly, p = |V | and q = |E|. A graph labeling is a map that
takes graph elements to numbers(typically integers). Various classes of labelings has been introduced by several
experts.An excellent analysis of graph labelings is glimpsed in [1].

During 1963, Sedlàček [2] described magic labeling in graphs. A graph G is magic when the edges of G usually
labeled with {1, 2, . . . , q} such that the sum over the labels of all edges incident with any vertex is equal [3]∑
v∈N(v)

f(uv) = M .

A covering of G is a family of subgraphs H1, H2, . . . , Hh so that each edge of E(G) pertaining to at least one
of the subgraphs Hi, 1 ≤ i ≤ h. This results that G possess an (H1, H2, . . . , Hh) covering. When each Hi is
isomorphic to the graph H, then G have an H-covering. Assume that G have an H-covering. A total labeling is
a bijective function f from V (G) ∪E(G) to {1, 2, 3, . . . , |V (G)|+ |E(G)|} is named an H-magic labeling of G if

there exists a positive integer M (termed the magic constant) so that for every subgraph H
′

of G isomorphic to
H,

∑
v∈V (H

′
)

f(v) +
∑

e∈E(H
′
)

f(e) = M . A graph which possess such a labeling is termed H-magic. The function

f is named as H-E-super magic labeling when f(E(G)) = {1, 2, . . . , q}.

The concept of H-magic labeling was explained by Gutierrez and Llado [4].

Llado and Moragas [5] explored few Cn-supermagic graphs.

Rosa [6] initiated a labeling known as β-valuation. Golomb [7] named that labeling as graceful. An one to one
function f from the vertices of G to { 0, 1, 2, . . . , q } is named as graceful labeling of G when every edge uv is
labeled as |f(u)− f(v)|, the resultant edge labels are different.

To acquire more knowledge regarding H-E-super magic graphs, read [8].

In 2019, Sindhu Murugan and S. Chandra Kumar [9] initiated an H-E-super magic graceful labeling (H-E-
SMGL). An H-E-SMGL is a bijective function f from V (G) ∪ E(G) to {1, 2, . . . , p + q} with f(E(G)) =
{1, 2, . . . , q} and

∑
v∈V (H

′
)

f(v)−
∑

e∈E(H
′
)

f(e) = M for few positive integer M . Herein, we examine Cn-E-SMGL

of some families of graphs.

There are so many types of magic labelings in graphs, defined and studied by various authors [10, 11, 12, 13,
14, 15, 16, 17]

2 Cn-E-Super Magic Graceful Graphs

Theorem 2.1. Let n ≥ 5 be an odd integer. Then the wheel graph Wn is C3-E-SMGL with magic constant
9n+5

2
.

Proof. Denote the vertices of n-cycle of the wheel Wn as a1, a2, . . . , an and its central vertex by r. We define a
total labeling f : V (Wn) ∪ E(Wn)→ {1, 2, 3, . . . , 3n+ 1} as follows:
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f(v) =


2n+ 1 if v = r
2n+ 2 if v = a1
2n+ i+3

2
if v = ai, i is odd for 3 ≤ i ≤ n

5n+3+i
2

if v = ai, i is even for 2 ≤ i ≤ n− 1

and

f(e) =


i if e = rai for 1 ≤ i ≤ n
2n+ 1− i if e = aiai+1 for 1 ≤ i ≤ n− 1
n+ 1 if e = ana1.

Now, we prove that f is a C3 − E-SMGL of Wn.

Let Ci
3 for 1 ≤ i ≤ n be the subcycle of Wn with V (Ci

3) = {ai : 1 ≤ i ≤ n} ∪ {r} and E(Ci
3) = {aiai⊕n1 : 1 ≤

i ≤ n} ∪ {rai : 1 ≤ i ≤ n} ∪ {rai⊕n1 : 1 ≤ i ≤ n}.

Case 1: Suppose i = 1.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(r) + f(a1) + f(a2)− [f(a1a2) + f(ra1) + f(ra2)]

= [2n+ 1] + [2n+ 2] + [ 5n+5
2

]− [2n+ 1 + 2] = 9n+5
2

.

Case 2: Suppose i is even for 2 ≤ i ≤ n− 1.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(r) + f(ai) + f(ai+1)− [f(aiai+1) + f(rai) + f(rai+1)]

= [2n+ 1] + [ 5n+3+i
2

] + [2n+ 2 + i
2
]− [2n+ 1− i+ i+ i+ 1] = 9n+5

2
.

Case 3: Suppose i is odd for 3 ≤ i ≤ n− 2.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(r) + f(ai) + f(ai+1)− [f(aiai+1) + f(rai) + f(rai+1)]

= [2n+ 1] + [2n+ i+3
2

] + [ 5n+4+i
2

]− [2n+ 1− i+ i+ i+ 1] = 9n+5
2

Case 4: Suppose i = n.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(r) + f(an) + f(a1)− [f(ana1) + f(ra1) + f(ran)]

= [2n+ 1] + [ 5n+3
2

] + [2n+ 2]− [n+ 1 + 1 + n] = 9n+5
2

.

The graph Wn is C3 − E-SMG with magic constant 9n+5
2

.

Example 2.2. The Wheel W7 admits C3-E-SMGL with magic constant 34.

Denote the vertices of n-cycle of the wheel Wn as a1, a2, . . . , a7 and its central vertex by r. Define f :
V (W7) ∪ E(W7)→ {1, 2, 3, . . . , 22} as follows:

f(v) =


15 if v = r
16 if v = a1
14 + i+3

2
if v = ai, i is odd for 3 ≤ i ≤ 7

19 + i
2

if v = ai, i is even for 2 ≤ i ≤ 6
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and

f(e) =


i if e = rai for 1 ≤ i ≤ 7
15− i if e = aiai+1 for 1 ≤ i ≤ 6
8 if e = a7a1.

u
u
u

u
u
u

u

u
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6

7

4

3

2

1
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9

8
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13
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11a5
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a1
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22

19

21

17

20

16

r
15

Fig. 1. C3-E-SMGL of W7

To prove that f is a C3 − E-SML of W7.

Let Ci
3 for 1 ≤ i ≤ n be the subcycle of Wn with V (Ci

3) = {ai : 1 ≤ i ≤ 7} ∪ {r} and E(Ci
3) = {aiai⊕n1 : 1 ≤

i ≤ 7} ∪ {rai : 1 ≤ i ≤ 7} ∪ {rai⊕71 : 1 ≤ i ≤ 7}.

Case 1: Suppose i = 1.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(r) + f(a1) + f(a2)− [f(a1a2) + f(ra1) + f(ra2)]

= [15] + [16] + [20]− [14 + 1 + 2] = 34.

Case 2: Suppose i is even for 2 ≤ i ≤ 6.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(r) + f(ai) + f(ai+1)− [f(aiai+1) + f(rai) + f(rai+1)]

= [15] + [19 + i
2
]− [16 + i

2
]− [15− i+ i+ i+ 1] = 34.

Case 3: Suppose i is odd for 3 ≤ i ≤ 5.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(r) + f(ai) + f(ai+1)− [f(aiai+1) + f(rai) + f(rai+1)]

= [15] + [14 + i+3
2

] + [ 39+i
2

]− [15− i+ i+ i+ 1] = 34

Case 4: Suppose i = 7.

41



Sindhu and Kumar; Asian Res. J. Math., vol. 19, no. 7, pp. 38-46, 2023; Article no.ARJOM.98052

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(r) + f(an) + f(a1)− [f(ana1) + f(ra1) + f(ran)]

= [15] + [19] + [16]− [8 + 1 + 7] = 34.

The graph Wn is C3 − E-SMG with magic graceful constant 34.

Theorem 2.3. Let n ≥ 1 be an integer. Then the Ladder graph Ln = P2 × Pn admits C4-E-SMGL with magic
constant 9n+ 4.

Proof. Let V (Ln) = {ai, bi : 1 ≤ i ≤ n} and E(Ln) = {aiai+1, bibi+1 : 1 ≤ i ≤ n− 1} ∪ {aibi : 1 ≤ i ≤ n} be the
vertex set and the edge set of Ln respectively.

We define a total labeling f : V (Ln) ∪ E(Ln)→ {1, 2, . . . , 5n− 2} as follows:

f(v) =

{
2n+ i+ 3 if v = ai for 1 ≤ i ≤ n
5n− i− 1 if v = bi for 1 ≤ i ≤ n

f(e) =


i if e = aibi for 1 ≤ i ≤ n
2n− i if e = aiai+1 for 1 ≤ i ≤ n− 1
3n− i− 1 if e = bibi+1 for 1 ≤ i ≤ n− 1.

Now, we prove that f is a C4 − E-SMGL of Ln.

Let Ci
4 for 1 ≤ i ≤ n− 1 be the subcycle of Ln with V (Ci

4) = {ai, bi : 1 ≤ i ≤ n} and E(Ci
4) = {aiai+1 : 1 ≤ i ≤

n− 1} ∪ {bibi+1 : 1 ≤ i ≤ n− 1} ∪ {aibi : 1 ≤ i ≤ n}.

Suppose 1 ≤ i ≤ n− 1.

Then M =
∑

v∈V (Ci
4)

f(v)−
∑

e∈E(Ci
4)

f(e) = f(ai) + f(ai+1) + f(bi) + f(bi+1)− [f(aibi) + f(ai+1bi+1) + f(aiai+1) +

f(bibi+1)]
= [2n+ i+ 3] + [2n+ i+ 4] + [5n− i− 1] + [5n− i− 2]− [i+ i+ 1 + 2n− i+ 3n− i− 1 = 9n+ 4. The graph Ln

is C4 − E-SMG with magic constant 9n+ 4.

Example 2.4. The Ladder graph L5 = P2 × P5 admits C4-E-SMGL with magic constant 49.

Let V (L5) = {ai, bi : 1 ≤ i ≤ 5} and E(L5) = {aiai+1, bibi+1 : 1 ≤ i ≤ 4} ∪ {aibi : 1 ≤ i ≤ 5} be the vertex set
and the edge set of L5 respectively.

Define f : V (L5) ∪ E(L5)→ {1, 2, . . . , 23} as follows:

f(v) =

{
13 + i if v = ai for 1 ≤ i ≤ 5
24− i if v = bi for 1 ≤ i ≤ 5

and

f(e) =


i if e = aibi for 1 ≤ i ≤ 5
10− i if e = aiai+1 for 1 ≤ i ≤ 4
14− i if e = bibi+1 for 1 ≤ i ≤ 4.
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u u u u u

u u u u u
1 2 3 4 5

9 8 7 6

13 12 11 10

a5a4a3a2a1

b5b4b3b2b1

1817161514

1920212223

Fig. 2. C4-E-SMGL of L5

To prove that f is a C4 − E-SMGL of L5.

Let Ci
4 for 1 ≤ i ≤ 4 be the subcycle of L5 with V (Ci

4) = {ai, bi : 1 ≤ i ≤ 5} and E(Ci
4) = {aiai+1 : 1 ≤ i ≤

4} ∪ {bibi+1 : 1 ≤ i ≤ 4} ∪ {aibi : 1 ≤ i ≤ 5}.
Suppose 1 ≤ i ≤ 4.

Then M =
∑

v∈V (Ci
4)

f(v)−
∑

e∈E(Ci
4)

f(e) = f(ai) + f(ai+1) + f(bi) + f(bi+1)− [f(aibi) + f(ai+1bi+1) + f(aiai+1) +

f(bibi+1)]
= [13 + i] + [14 + i] + [24− i] + [23− i]− [i+ i+ 1 + 10− i+ 14− i] = 49.

Thus the graph L5 is C4 − E-SMG with magic constant 49.

Theorem 2.5. Let n ≥ 2 be an integer. Then the triangular Ladder TLn admits C3-E-SMGL with magic
constant M = 10n− 5.

Proof. Let V (TLn) = {ai, bi : 1 ≤ i ≤ n} and E(TLn) = {aiai+1, bibi+1 : 1 ≤ i ≤ n − 1} ∪ {aibi : 1 ≤ i ≤
n} ∪ {aibi+1 : 1 ≤ i ≤ n− 1} be the vertex set and the edge set of TLn respectively.. We define a total labeling
f : V (TLn) ∪ E(TLn)→ {1, 2, . . . , 6n− 3} as follows:

f(v) =

{
4n+ 2i− 3 if v = ai for 1 ≤ i ≤ n
4n+ 2i− 4 if v = bi for 1 ≤ i ≤ n

and

f(e) =


2i− 1 if e = aibi for 1 ≤ i ≤ n
2n+ 2i− 2 if e = aiai+1 for 1 ≤ i ≤ n− 1
2n+ 2i− 1 if e = bibi+1 for 1 ≤ i ≤ n− 1
2i if e = aibi+1 for 1 ≤ i ≤ n− 1.

To prove that f is a C3 − E-SMGL of TLn.

Let Ci
3 for 1 ≤ i ≤ n − 1 be the subcycle of TLn with V (Ci

3) = {ai : 1 ≤ i ≤ n} ∪ {bi : 1 ≤ i ≤ n} and
E(Ci

3) = {aiai+1 : 1 ≤ i ≤ n− 1} ∪ {bibi+1 : 1 ≤ i ≤ n− 1} ∪ {ai, bi : 1 ≤ i ≤ n}. Suppose 1 ≤ i ≤ n− 1.
Then M =

∑
v∈V Ci

3

f(v) −
∑

e∈ECi
3

f(e) = f(ai) + f(ai+1) + f(bi+1) − [f(aiai+1) + f(ai+1bi+1) + f(bi+1ai)] =

[4n+ 2i− 3] + [4n+ 2i− 1] + [4n+ 2i− 2]− [2n+ 2i− 2 + 2i+ 1 + 2i] = 10n− 5.

The graph TLn is C3 − E-SMG with magic constant 10n− 5.
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Example 2.6. The triangular Ladder TL5 admits C3-E-SMGL with magic constant M = 45.

Let V (TL5) = {ai, bi : 1 ≤ i ≤ 5} and E(TL5) = {aiai+1, bibi+1 : 1 ≤ i ≤ 4} ∪ {aibi : 1 ≤ i ≤ 5} ∪ {aibi+1 : 1 ≤
i ≤ 4} be the vertex set and the edge set of TL5 respectively.
Define f : V (TL5) ∪ E(TL5)→ {1, 2, . . . , 27} as follows:

f(v) =

{
17 + 2i if v = ai for 1 ≤ i ≤ 5
16 + 2i if v = bi for 1 ≤ i ≤ 5

and

f(e) =


2i− 1 if e = aibi for 1 ≤ i ≤ 5
8 + 2i if e = aiai+1 for 1 ≤ i ≤ 4
9 + 2i if e = bibi+1 for 1 ≤ i ≤ 4
2i if e = aibi+1 for 1 ≤ i ≤ 4.

u u u u u

u u u u u
2 4 6 81 3 5 7 9

10 12 14 16

11 13 15 17

a5a4a3a2a1

b5b4b3b2b1

2725232119

2624222018

Fig. 3. C3-E-SMGL of triangular ladder TL5

To prove that f is a C3 − E-SMGL of TL5.

Let Ci
3 for 1 ≤ i ≤ 4 be the subcycle of TL5 with V (Ci

3) = {ai : 1 ≤ i ≤ 5} ∪ {bi : 1 ≤ i ≤ 5} and
E(Ci

3) = {aiai+1 : 1 ≤ i ≤ 4} ∪ {bibi+1 : 1 ≤ i ≤ 4} ∪ {ai, bi : 1 ≤ i ≤ 5}. Suppose 1 ≤ i ≤ n− 1.

Then M =
∑

v∈V (Ci
3)

f(v) −
∑

e∈E(Ci
3)

f(e) = f(ai) + f(ai+1) + f(bi+1) − [f(aiai+1) + f(ai+1bi+1) + f(bi+1ai)]

= [17 + 2i] + [17 + 2i+ 2] + [16 + 2i+ 2]− [2i+ 1 + 8 + 2i+ 2i] = 45.

Thus the graph TL5 is C3 − E-SMG with magic constant 45.

Theorem 2.7. Let n ≥ 2 be an integer. Then the triangular snake graph ∆n admit C3-E-SMGL with magic
constant M = 7n+ 2.

Proof. Let V (∆n) = {ai : 1 ≤ i ≤ n + 1} ∪ {bi : 1 ≤ i ≤ n} and E(∆n) = {aiai+1 : 1 ≤ j ≤ n} ∪ {aibi : 1 ≤
j ≤ n} ∪ {ai+1bi : 1 ≤ i ≤ n} be the vertex set and the edge set of ∆n respectively. We define a total labeling
f : V (∆n) ∪ E(∆n)→ {1, 2, . . . , 6n+ 1} as follows:

f(v) =

{
3n+ i if v = ai for 1 ≤ i ≤ n+ 1
5n+ 2− i if v = bi for 1 ≤ i ≤ n
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and

f(e) =


i if e = aiai+1 for 1 ≤ i ≤ n
3n+ 1− i if e = aibi for 1 ≤ j ≤ n
n+ i if e = ai+1bi for 1 ≤ j ≤ n.

To prove that f is a C3 − E-SMGL of ∆n.

Let Ci
3 for 1 ≤ i ≤ n be the subcycle of Ln with V (Ci

3) = {ai : 1 ≤ j ≤ n} ∪ {bi : 1 ≤ j ≤ n} and
E(Ci

3) = {aiai+1 : 1 ≤ j ≤ n} ∪ {aibi : 1 ≤ j ≤ n} ∪ {ai+1, bi : 1 ≤ j ≤ n}.

Suppose 1 ≤ i ≤ n.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(ai) + f(ai+1) + f(bi)− [f(aiai+1) + f(aibi) + f(ai+1bi)] = [3n+ i] +

[3n+ i+ 1] + [5n+ 2− i]− [i+ 3n+ 1− i+ n+ i] = 7n+ 2.

The graph ∆n is C3 − E-SMG with magic constant 7n+ 2.

Example 2.8. The triangular snake graph ∆6 admits C3-E-SMGL with magic constant M = 44.

Let V (∆6) = {ai : 1 ≤ i ≤ 7} ∪ {bi : 1 ≤ i ≤ 6} and E(∆6) = {aiai+1 : 1 ≤ i ≤ 6} ∪ {aibi : 1 ≤ i ≤ 6} ∪ {ai+1bi :
1 ≤ i ≤ 6} be the vertex set and the edge set of ∆6 respectively. Define f : V (∆6) ∪ E(∆6)→ {1, 2, . . . , 37} as
follows:

f(v) =

{
18 + i if v = ai for 1 ≤ i ≤ 7
32− i if v = bi for 1 ≤ i ≤ 6

and

f(e) =


i if e = aiai+1 for 1 ≤ i ≤ 6
19− i if e = aibi for 1 ≤ i ≤ 6
6 + i if e = ai+1bi for 1 ≤ i ≤ 6.

s s s s s s s

s s s s s s
18 7 17 8 16 9 15 10 14 11 13 12

1 2 3 4 5 6

b6b5b4b3b2b1

a7a6a5a4a3a2a1

262728293031

25242322212019

Fig. 4. C3-E-SMGL of triangular snake ∆6

To prove that f is a C3 − E-SMGL of ∆6.

Let Ci
3 for 1 ≤ i ≤ 6 be the subcycle of ∆6 with V (Ci

3) = {ai : 1 ≤ i ≤ 6} ∪ {bi : 1 ≤ i ≤ 6} and
E(Ci

3) = {aiai+1 : 1 ≤ i ≤ 6} ∪ {aibi : 1 ≤ i ≤ 6} ∪ {ai+1, bi : 1 ≤ i ≤ 6}.
Suppose 1 ≤ i ≤ 6.

Then M =
∑

v∈V (Ci
3)

f(v)−
∑

e∈E(Ci
3)

f(e) = f(ai) + f(ai+1) + f(bi)− [f(aiai+1) + f(aibi) + f(ai+1bi)] = [18 + i] +

[18 + i+ 1] + [32− i]− [19− i+ 6 + i+ i] = 44.

Thus the graph ∆n is C3 − E-SMG with magic constant 44.
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3 Conclusion

In this article,we have discussed Cn-E- super Magic Graceful Labeling of Some Special Graphs.
Also we have given the examples related the theorem.
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[11] Ali G, Bača M, Bashir F. On super vertex-antimagic total labelings of disjoint union of paths. AKCE
International Journal of Graphs and Combinatorics. 2009;6(1):11-20.

[12] Baskar Babujee J, Vishnu Priya V. Edge bimagic labeling in graphs. Acta Ciencia Indica. 2005;XXXIM
(3):741.

[13] Bondy JA, Murty USR. Graph Theory with Applications, Elsevier, North Holland, New York; 1986.

[14] Lin Y, Miller M. Vertex-magic total labelings of complete graphs. Bull. Inst. Combin. Appl. 2001;33:68-76.

[15] Muthuraja NT, Selvagopal P, Jeyanthi P. Cycle-supermagic coverings and decomposition of some graphs.
Amer. J. Math. Sci. Appl. 2014;2(1):83-92.

[16] Ngurah AA, Salman AN, Susilowati L. H-supermagic labelings of graphs. Discrete Mathematics.
2010;310(8):1293-300.

[17] Petersen J. Die Theorie der regularen Graphen. Acta Math. 1891;15:19320.

————————————————————————————————————————————————————–
© 2023 Sindhu and Kumar; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-tion, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address
bar)
https://www.sdiarticle5.com/review-history/98052

46

http://creativecommons.org/licenses/by/4.0

	ASIAN - Copy.pdf (p.1)
	ASIAN.pdf (p.2-9)
	Introduction
	Cn-E-Super Magic Graceful Graphs
	Conclusion


