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ABSTRACT 
 
Aim: Integrase inhibitors are an essential enzyme required for replication of the acquired 
immunodeficiency syndrome virus. It is a potent target for anti- HIV therapy. A QSAR study is 
performed on the series indole �-diketo, diketo acid and carboxamide derivatives in order to analyze 
the physicochemical requirements of integrase inhibitors and to provide structural insight into the 
binding mode of the molecules to the enzyme. This will help in the design of these molecules as 
integrase inhibitors and predicting the inhibitory activity of the newly designed analogues.  
Materials and Methods: All the derivatives in the series were sketched using ChemDraw ultra 
v12.0.2 module of ChemOffice 2010 and the sketched structures were consequently used for the 
calculation of molecular descriptors available in QSAR software Spartan’14 and PaDEL-Descriptors 
software. Quantum, constitutional, topological and functional group descriptors for all molecules 
were calculated using Spartan’14 v1.1.2,  2013 and PaDEL-Descriptors software v2.18, 2011 and 
correlation between the biological activity and molecular descriptors was found through genetic 
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function approximation adopted by statistical program material studio v7.0.  
Results: The generated QSAR models revealed that SsF, minHBint3, minHdsCH, FPSA-1 and 
RHSA descriptors have good correlation to the integrase inhibitors activity.  
Conclusion: The results obtained by regression analysis indicated that minHBint3, minHdsCH and 
RHSA is negatively contributing to inhibitory activity thus; enhancement of inhibitory activity can be 
achieved by decreasing the respective descriptors. Positive contribution of SsF and FPSA-1 
specifies that increase of sum of atom-type E-state: -F and PPSA-1/total molecular surface area, will 
impart positive influence on activity.  
 

 
Keywords: Quantitative Structure–Activity Relationships (QSAR); GFA approach; density function 

theory indole β-diketo; diketo acid and carboxamide derivatives; integrase inhibitors. 
 
1. BACKGROUND 
 
A needed condition in the retroviral life cycle is 
the integration of the viral double-stranded DNA 
into the host chromosome. HIV-1 integrase (IN) 
enzyme removes a dinucleotide next to a 
conserved cytosine–adenine sequence from 
each 3’-end of the viral DNA [1]. Formerly, IN 
catalyzes linking of the processed viral 3’-ends to 
the 5’-ends of strand disruptions in the host DNA. 
HIV-1 IN enzyme has no equal in host cell and is 
also an essential enzyme for effective viral 
replication [2]. Inhibitors of this enzyme are of 
paramount importance for the treatment of HIV 
infection [3]. A deep research is being carried out 
on HIV-1 IN protein, but only one US-FDA-
approved drug 'Raltagravir' is available in market 
(http://www.fda.gov) [4], which is administered in 
combination with other antiretroviral agents [5] 
and one more, Elvitegravir [6], is now entering 
phase III clinical trials. Therefore, current 
situation warrants more HIV-1 IN inhibitors with 
good potency. 
 
Numerous molecular modeling aspects have 
been involved in the development of potent HIV-
1 IN inhibitors, e.g., QSAR, pharmacophore 
mapping, and docking studies. A number of 3D 
QSAR studies were done to obtain 
understandings into the structural requirement of 
HIV-1 IN inhibitors, which can be useful in the 
enhancement of HIV-1 inhibitory activity [7]. 
Likewise, 2D QSAR was done on different series 
of molecules and found that topological indices 
[8]. Recently published 2D QSAR analysis of 
coumarin derivatives result showed that Henry’s 
law Constant, Partition Coefficient and Dipole 
moment-Z component significantly affect the 
inhibition of HIV-1 IN activity [9].  
 
The scarcity of new affordable drugs has not only 
complicated the clinical management of HIV-1 in 
pervasive areas, but has also resulted in an 

increase in the mortality rate [10]. This situation 
emphasizes needs for urgent discovery of new 
anti-HIV agents. Nevertheless lower abundance 
of Raltagravir and related products encourage 
the medicinal chemists to search for new 
chemical pharmacophores which may prove 
effective as anti-HIV. Several experimental 
methods available for screening the biological 
activity of chemicals (e.g., in vivo and in vitro 
assay tests). These methods have been applied 
widely to rat and mouse [11]. However, these 
methods are costly, time-consuming, and can 
potentially produce toxic side products. The 
efficient way to obtain a complete set of the data, 
without the necessity of performing expensive 
laboratory experiments is apply quantitative 
structure–activity relationship (QSAR) 
techniques. The QSAR is one of the most 
important areas in chemometrics, and is a 
valuable tool that is used extensively in drug 
design and medicinal chemistry [12, 13]. 
Chemical and biological effects are related 
closely to molecular physicochemical properties 
by QSAR technique [14]. Once a reliable QSAR 
model is established, the activities of molecules 
can be predicted, and the structural features that 
play a significant role in the biological process 
can be identified. The advances in QSAR studies 
have therefore, widened the scope of rational 
drug design as well as the search for the 
mechanisms of drug actions. Many different 
methodologies, such as multiple linear 
regression (MLR), partial least squares (PLS), 
principal component analysis (PCA), support 
vector machine (SVM), heuristic method (HM), 
and different types of artificial neural networks 
(ANN), can be applied for QSAR development. 
Genetic function approximation (GFA) has 
gained great popularity in QSAR research. The 
main aim of the present work is to establish a 
new QSAR model for predicting anti-HIV activity 
of 44 indole � -diketo, diketo acid and 
carboxamide derivatives using GFA technique. 
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2. DATA SET AND METHODS 
 

2.1 Data Set 
 

In this study, a data set of 44 indole �-diketo, 
diketo acid and carboxamide derivatives was 
collected from the literature [15, 16]. The 
chemical structures and anti-HIV activity (IC50) of 
these 44 molecules are presented in Table 1. 
The IC50 values were converted into its 
logarithmic scale -log (IC50) = pIC50, to reduce 
the skewness of the data set, which was then 
used for subsequent QSAR analysis as the 
response variable. It is essential to assess the 
predictive power of QSAR models by using a test 

set of molecules according to the following 
criteria:  
 

(1) The anti-HIV activity values of the test set 
should span the training set several times; 

(2) The biological assay methods for both the 
training set and test set should be the 
same or comparable; 

(3) The test set should represent a balanced 
number of both active and inactive 
molecules for uniform sampling of the data 
set. The remaining molecules are taken as 
the training set in order to create an 
efficient QSAR model [17]. 

 
Table 1. Structures and biological activity of training and test set 

 
    

 
                                                                

Fig. A 
 

Compd No R R1 R2 X Log IC50 
1 H H CH3 2-CO 0.7780 
2                  OCH2O CH3 2-CO 0.3010 
3 H H CH2CH3 2-CO 0.2040 
4                  OCH2O CH2CH3 2-CO 0.6990 
5 H H Bn 2-CO 0.0000 
6                  OCH2O Bn 2-CO 0.3010 
7 H H CH3 3-CO 0.3010 
8                  OCH2O CH3 3-CO 0.4770 
9 H H CH2CH3 3-CO 0.4770 
10                  OCH2O CH2CH3 3-CO 0.4770 
11 H H Bn 3-CO 0.0000 

 

 
 

Fig. B 
 

Compd No R R1 R2 X Log IC50 
12 H H CH3 2-CO 1.6530 
13                  OCH2O CH3 2-CO 1.6990 
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Compd No R R1 R2 X Log IC50 
14                  OCH2O CH2CH3 2-CO 1.8130 
15                  OCH2O CH3 3-CO 1.7780 
16 H H CH2CH3 3-CO 1.4150 
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Fig. C 
 

Compd No R1 R2 IC50 
17 4’-Cl - 0.000 
18 3’-F - 0.602 
19 - 4-OCH3 0.824 
20 - 3-OCH3 0.854 

 

 
    

Fig. D 
 

Compd No. R1 R2 LogIC50 
21 4-F - 1.000 
22 H - 0.638 
23 2-Cl - 0.432 
24 3-Cl - 1.398 
25 4-Cl - 0.420 
26 4-F, 3-Cl - 1.398 
27 4-F CN 1.699 
28 4-F Br 1.523 
29 4-F I 1.699 

 

 
    

Fig. E 
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Compd No. R1 R2 R3 LogIC50 
30 NHCOCH3 CH3 4-fluorotoluene 2.1555 
31 NH-SO2-CH3 CH3 4-fluorotoluene 2.097 
32 NHCO-N(CH3)2 CH3 4-fluorotoluene 1.745 
33 NHSO2-N(CH3)2 CH3 4-fluorotoluene 1.921 
34 NHCOCO-N(CH3)2 CH3 4-fluorotoluene 2.000 
35 NHCOCO-OCH3 CH3 4-fluorotoluene 1.824 
36 NHCOCO-OH CH3 4-fluorotoluene 2.398 
37 N(CH3)COCO-N(CH3)2 CH3 4-fluorotoluene 1.824 
38 NHCO-pyridine CH3 4-fluorotoluene 1.699 
39 NHCO-pyridazine CH3 4-fluorotoluene 1.824 
40 NHCO-pyrimidine CH3 4-fluorotoluene 2.155 
41 NHCO-oxazole CH3 4-fluorotoluene 2.155 
42 NHCO-thiazole CH3 4-fluorotoluene 2.097 
43 NHCO-1H imidazole CH3 4-fluorotoluene 2.222 
44 NHCO-1,3,4-oxadiazole CH3 4-fluorotoluene 1.824 

 
2.2 Descriptor Calculation 
 
All of the molecules were drawn into the 
ChemDraw ultra version 12.0.2 software and 
transferred to Spartan’14 version 1.1.2 to create 
the three-dimensional (3D) structure, pre-
optimized using the MM+ molecular mechanics 
force field. Then a more precise optimization was 
performed with the density functional theory 
(DFT) with Becke’s three-parameter hybrid 
functional [18] using LYP correlation functional 
[19]. The standard Pople’s   6-311G* using basis 
set was used. Descriptors were calculated by 
using the Spartan’14 v1.1.2 and PaDEL-
Descriptor version 2.18 software package [20] 
which include: constitutional, topological, 
geometrical, electrostatic, charged partial surface 
area, quantum-chemical, molecular orbital and 
thermodynamic descriptors. Before commencing 
with the development of the QSAR model, the 
correlation matrix of about 2000 descriptors was 
calculated and highly correlated descriptors, with 
correlation values above 0.98, were removed. 
Furthermore, descriptors with constant values as 
well as those with poor correlation with the anti-
HIV activity were discarded; some descriptors 
having zero value were also discarded. Finally, 
remained descriptors were considered for 
statistical fitting using the GFA method. 
 
2.3 Computational Methods  
 
Density functional theory (DFT) were used in this 
study. These methods have become very 
popular in recent years because they can reach 
similar precision to other methods in less time 
and less cost from the computational point of 
view. In agreement with the DFT results, energy 
of the fundamental state of a polyelectronic 
system can be expressed through the total 

electronic density, and in fact, the use of 
electronic density instead of wave function for 
calculating the energy constitutes the 
fundamental base of DFT [21] using the B3LYP 
functional [18,19] and a 6-311G* basic set. The 
B3LYP, a version of DFT method, uses Becke’s 
three-parameter functional (B3) and includes a 
mixture of HF and DFT exchange terms 
associated with the gradient correlation 
functional of Lee Yang and Parr (LYP). The 
geometry of all species under investigation was 
determined by optimizing all geometrical 
variables without any symmetry constraints [22].  
 
2.4 Genetic Function Approximation for 

Descriptor Selection 
 
Genetic function approximation (GFA) are 
governed by biological evolution rules [23]. The 
GFA, which are based on the principles of 
Darwinian evolution, have emerged as robust 
optimization and search methods [24]. In a GFA 
feature selection procedure, potential solutions 
for the problem being studied are subsets of 
molecular descriptors. They are represented as 
data structures called chromosomes, which are 
binary strings of length N (the total number of 
available features), with a zero or one in position 
i indicating the absence or presence of feature i 
in the set. The initial population of chromosomes 
is usually generated randomly. After that, GA 
runs in cycles. The fitness of each chromosome 
is evaluated by the fitness function. The fitness 
function used here was the leave-one-out, cross-
validated correlation coefficient (Q2

LOO). New 
chromosomes are then created by genetic 
operators such as crossovers and mutations. 
Crossover occurs when two parent 
chromosomes exchange parts of their 
corresponding elements. Mutations induce 
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sporadic alterations of randomly selected 
chromosome elements. In each cycle, a new 
chromosome (feature set) is produced either by 
mutation or crossover on the selected parents, 
and it is compared with the worst member of the 
existing population. If the new one is better, it 
becomes a member of the population, and the 
original worst one is discarded; if not, the new 
one is discarded, and GFA goes into next 
generation with the population unchanged. The 
GFA cycle is repeated until a satisfactory 
descriptor set is found or a pre-set limit of 
generation is reached. The GFA program was 
perform in Material Studio version 7.0. 
 
2.5 The Need for Defining the Limitation 
 

1)  If there is a measurement error in the 
experimental data, it is very likely that false 
correlations may arise. 

2)  If the training dataset is not large enough, 
the data collected may not reflect the 
complete property space. Consequently, 
many QSAR results cannot be used to 

confidently predict the most likely 
compounds of the best activity. 

3)  The third aspect is the chemical domain. 
There are always chemicals which do not 
follow the given simple relationship 
between dependent (pIC50) and 
descriptors. 

 

3. RESULTS AND DISCUSSION 
 
A QSAR analysis was done to discover the 
structure–activity relationship of different 44 
indole � -diketo, diketo acid and carboxamide 
derivatives acting as anti-HIV. In a QSAR study, 
normally, the quality of a model is expressed by 
its fitting and prediction ability. In order to build 
and test model, a data set of 44 compounds was 
separated into a training set of 30 compounds, 
which was used to build model and a test set of 
11 compounds, which was applied to evaluate 
the built model. The GFA analysis led to the 
derivation of five model, with five descriptors. 
With the selected descriptors, we have built the 
linear model using the training set data, and 
obtained the following equation (Table 2):

 
Table 2. The linear model using the training set data 

 
No. Equation Definitions 
1 Y =  0.0269 * X152 - 0.0982* X157 - 1.2987* 

X165   +5.2783* X295- 2.9555* X310+ 0.5865 
X152 :  SsF; X157 : minHBint3; X165 : 
minHdsCH 
X295 : FPSA-1; X310 : RHSA 

2 Y =  - 0.0977* X157- 1.5300* X165+ 0.4739* 
X178 - 0.0087* X289+ 0.0053* X309- 2.9440 

X157 : minHBint3; X165 : minHdsCH; 
X178 : maxHBa; X289 : PNSA-1; 
X309 : TPSA 

3 Y =  7.7558* X83- 0.1224* X157- 1.3135* X165+ 
3.6339* X295- 3.6413* X310+ 2.1059 

X83 : VC-6; X157 : minHBint3; X165 : 
minHdsCH 
X295 : FPSA-1; X310 : RHSA 

4 Y =  - 0.0909* X157- 1.6131* X165+ 0.5841* 
X178 + 5.9132* X295- 0.0043* X308 - 7.1316 

X157 : minHBint3; X165 : minHdsCH; 
X178 : maxHBa; X295 : FPSA-1; X308 
: THSA 

5 Y =  - 1.9310* X37- 1.8798* X153- 0.9923* 
X165+ 1.7979* X296- 5.3707* X310+ 5.0087 

X37 : ATSc1; X153 : minHBd; X165 : 
minHdsCH; X296 : FPSA-2; X310 : 
RHSA 

 
Table 3. Summary of input data for genetic function approximation 

 
Number of rows requested 30 
Number of rows used 30 
Number of rows omitted due to invalid row description 0 
Number of rows omitted due to invalid data 0 
Number of columns requested 380 
Number of columns used 380 
Number of columns omitted due to invalid column description 0 
Number of columns omitted due to invalid data 0 
Number of cells omitted due to invalid data 0 
Number of cells replaced by default value 0 
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In this equation, R2 is the squared correlation 
coefficient, Q2

LOO, and Q2
LNO are the squared 

cross-validation coefficients for leave one out 
and leave many out respectively, F is the Fisher 
F statistic, and RMSE is the root mean square 
error (Table 4). The built model was used to 
predict the test set data, and the prediction 
results are given in Table 6. The predicted values 
for pIC50 for the compounds in the training and 
test sets using equation 1 were plotted against 
the experimental pIC50 values in Figs. 1, 2 and 3. 
As can be seen from Table 2 and Fig. 3, the 
predicted values for the pIC50 are in good 
agreement with those of the observed values. 
 
Also, the plot of the residual for the predicted 
values of pIC50 for both the training and test sets 
against the observed pIC50 values are shown in 
Fig. 4. As can be seen the model did not show 
any proportional and systematic error, because 
the propagation of the residuals on both sides of 
zero is random. 
 
3.1 QSAR Model Validation 
 
The effectiveness of QSAR models is not just 
their capability to reproduce known data, proved 
by their fitting power (R2), but primarily is their 

potential for predictive application. For this 
reason, the internal reliability of the training set 
was confirmed by using leave-one-out (LOO) 
cross-validation method to ensure the robustness 
of the model. The high calculated Q2

LOO value, 
0.9636 suggests a good internal validation. A 
second validation method was also developed on 
the basis of a leave-many-out (LNO) internal 
cross-validation method. In this case, a group of 
compounds including 17% of the training data set 
were left out and predicted later by the model 
obtained with the remaining 83% of the data. 
This process was repeated 100 times for each 
one of the 100 unique subsets selected at 
random. The overall mean for this process (17% 
full-leave out cross-validation), Q2

L5O = 0.8816 
indicates the robustness and stability of the built 
model (Table 4). The difference between the R2 
and R2

adj value is less than 0.3 indicates that the 
number of descriptors involved in the QSAR 
model is acceptable. The number of descriptors 
is not acceptable if the difference is more than 
0.3.  For good predictability R2 – Q2 value is less 
than 0.3.The results in (Table 6), has shown that 
the selected model presented high external 
predictability, considering the proposed limits. 
The values of K or K’ and the relation ���� − ��′�� 
are inside the acceptable range [25,26]. 

   
Table 4. Comparison of statistical quality and internal validation parameters of different 

models 
 

 Parameter Equation 1 Equation 2 Equation 3 Equation 4 Equation 5 
1 Friedman LOF 0.0683 0.0718 0.0737 0.0741 0.0754 
2 R-squared 0.9782 0.9771 0.9765 0.9764 0.9760 
3 Adjusted R-

squared 
0.9737 0.9723 0.9716 0.9714 0.9709 

4 Cross validated R-
squared 

0.9636 0.9654 0.9627 0.9624 0.9652 

5 Significant 
Regression 

Yes Yes Yes Yes Yes 

6 Significance-of-
regression F-value 

215.4925 204.7373 199.4729 198.3318 194.7928 

7 Critical SOR F-
value (95%) 

2.6441 2.6441 2.6441 2.6441 2.6441 

8 Replicate points 0 0 0 0 0 
9 Leave five out 

Cross validated R-
squared 

0.8816 0.8786 0.8721 0.8777 0.8816 

10 Lack-of-fit points 24 24 24 24 24 
11 Min expt. error for 

non-significant 
LOF (95%) 

0.1001 0.1027  0.1043 0.1052 

12 Root mean square 
error (RMSE) 

0.1105 0.1131 0.1145 0.1149 0.1162 
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Table 5. Predicted and Residual values of training and test set 
 

No. pIC50 Eq1:Prd Eq1: Resi Eq2: Prd Eq2: Resi Eq3: Prd Eq3: Resi Eq4: Prd Eq4: Resi Eq5: Prd Eq5: Resi 
2 0.301 0.3508 -0.0498 0.3171 -0.0161 0.4837 -0.1827 0.2329 0.0681 0.3488 -0.0478 
3 0.204 0.3053 -0.1013 0.3259 -0.1219 0.2963 -0.0923 0.3307 -0.1267 0.2288 -0.0248 
4 0.699 0.6282 0.0708 0.6008 0.0982 0.6048 0.0942 0.578 0.1210 0.4745 0.2245 
5 0.00 0.0451 -0.0451 0.0998 -0.0998 -0.0121 0.0121 0.1805 -0.1805 0.0625 -0.0625 
6 0.301 0.3128 -0.0118 0.3162 -0.0152 0.3016 -0.0006 0.3485 -0.0475 0.3498 -0.0488 
9 0.477 0.5267 -0.0497 0.4450 0.032 0.4190 0.058 0.4718 0.0052 0.2792 0.1978 
10 0.477 0.5427 -0.0657 0.6266 -0.1496 0.6033 -0.1263 0.5942 -0.1172 0.512 -0.0360 
12 1.653 1.5749 0.0781 1.5483 0.1047 1.5966 0.0564 1.6128 0.0402 1.5632 0.0898 
13 1.699 1.6278 0.0712 1.6040 0.0950 1.7074 -0.0084 1.6025 0.0965 1.6457 0.0533 
14 1.813 1.8768 -0.0638 1.9034 -0.0904 1.885 -0.072 1.9135 -0.1005 1.8916 -0.0786 
15 1.778 1.7526 0.0254 1.8221 -0.0441 1.8399 -0.0619 1.845 -0.067 1.8143 -0.0363 
17 0.000 0.0722 -0.0722 0.0154 -0.0154 0.1981 -0.1981 -0.0519 0.0519 0.332 -0.3320 
18 0.602 0.4780 0.1240 0.6024 -0.0005 0.3507 0.2513 0.6128 -0.0108 0.5847 0.0173 
19 0.824 0.7638 0.0602 0.7174 0.1066 0.7143 0.1097 0.7351 0.0889 0.8184 0.0056 
20 0.854 0.7810 0.0730 0.7039 0.1501 0.7294 0.1246 0.7053 0.1487 0.8401 0.0139 
21 2.155 2.2291 -0.0741 2.2743 -0.1193 2.0845 0.0705 2.2951 -0.1401 2.0981 0.0569 
24 1.921 1.9172 0.0038 1.9212 -0.0002 1.9368 -0.0158 1.9990 -0.0780 1.8954 0.0256 
25 2.00 2.2170 -0.2170 2.1659 -0.1659 2.1317 -0.1317 2.0773 -0.0773 2.1171 -0.1171 
27 2.398 2.1899 0.2081 2.2775 0.1205 2.3171 0.0809 2.2072 0.1908 2.3956 0.0024 
28 1.824 1.6518 0.1722 1.6907 0.1333 1.8578 -0.0338 1.7426 0.0814 1.7547 0.0693 
29 1.699 1.8761 -0.1771 1.784 -0.085 1.7854 -0.0864 1.7844 -0.0854 1.9083 -0.2093 
30 1.824 1.7711 0.0529 1.7087 0.1153 1.7352 0.0888 1.7368 0.0872 1.7991 0.0249 
31 2.155 1.9126 0.2424 1.9011 0.2539 1.9070 0.248 1.9009 0.2541 2.0159 0.1391 
33 2.097 2.0919 0.0051 2.0279 0.0691 2.114 -0.017 1.9919 0.1051 2.0907 0.0063 
35 1.824 1.9200 -0.0960 1.8957 -0.0717 1.9381 -0.1141 1.8790 -0.0550 1.8668 -0.0428 
36 1.000 1.0860 -0.0860 0.9865 0.0135 0.8936 0.1064 0.9862 0.0138 0.9838 0.0162 
38 0.432 0.4737 -0.0417 0.5452 -0.1132 0.5414 -0.1094 0.5677 -0.1357 0.5007 -0.0687 
40 0.420 0.2912 0.1288 0.3206 0.0994 0.4187 0.0013 0.2984 0.1216 0.3677 0.0523 
42 1.699 1.8968 -0.1978 1.9632 -0.2642 1.8609 -0.1619 1.9273 -0.2283 1.8356 -0.1366 
43 1.523 1.4901 0.0328 1.5420 -0.090 1.4129 0.1100 1.5474 -0.0244 1.2778 0.2452 
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Test set 
No. pIC50 Eq1:Prd Eq1: Resi Eq2: Prd Eq2: Resi Eq3: Prd Eq3: Resi Eq4: Prd Eq4: Resi Eq5: Prd Eq5: Resi 
7 0.301 0.6276 -0.3266 -0.1253 0.4263 0.5412 -0.2402 0.5003 -0.1993 0.3998 -0.0988 
8 0.477 0.4046 0.0724 0.9028 -0.4258 0.5407 -0.0637 0.4425 0.0345 0.4225 0.0545 
11 0 0.1967 -0.1967 -0.1566 0.1566 0.1138 -0.1138 0.1601 -0.1602 0.1913 -0.1913 
16 1.415 1.7782 -0.3632 0.2419 1.1731 1.7074 -0.2924 1.9038 -0.4888 1.6469 -0.2319 
22 2.097 2.1128 -0.0158 1.3559 0.7411 2.1365 -0.0395 2.1398 -0.0428 2.3839 -0.2869 
23 1.745 2.1175 -0.3725 0.6467 1.0983 1.9694 -0.2244 2.2199 -0.4749 2.042 -0.297 
26 1.824 2.2232 -0.3992 0.7881 1.0359 2.1587 -0.3347 2.1059 -0.2819 2.0422 -0.2182 
32 2.155 2.1964 -0.0414 1.0199 1.1351 2.1491 0.0059 2.2088 -0.0538 2.2619 -0.1069 
34 2.222 2.1981 0.0239 0.8526 1.3694 2.1371 0.0849 2.1273 0.0947 2.446 -0.224 
37 0.638 0.7283 -0.0903 -0.2682 0.9062 0.7501 -0.1121 0.8108 -0.1728 0.7548 -0.1168 
44 1.699 1.3893 0.3097 1.7864 -0.0874 1.325 0.3740 1.4491 0.2499 1.1638 0.5352 
pIC50: Actual values; Eq1: predicted value for equation 1, Residual1: residual value for equation 1; Eq2: predicted value for equation 2, Residual2: residual value for equation 
2; Eq3: predicted value for equation 3, Residual3: residual value for equation 3; Eq4: predicted value for equation 4, Residual4: residual value for equation 4; Eq5: predicted 

value for equation 5, Residual5: residual value for equation 5 
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Table 6. External validation parameters of 
equation 1 

 
Parameter value Threhold value 
�� 0.9246 ≥ 0.5 
��� 0.9222 - 
��
;� 0.9096 - 
�
(���)
�  0.9559 ≥ 0.5 
�
(����)
�  0.8794 ≥ 0.5 
�
(�������)
�  0.9468 ≥ 0.5 
�����
�  0.8985 ≥ 0.5 
���
�  0.8961 ≥ 0.5 

���� − ��′�� 0.0126 ≤ 0.3 
  0.9245 0.85 ≤  ≤ 1.15 
�� − ���

��#  0.0026 < 0.1 

 ′ 1.0601 0.85 ≤  ≤ 1.15 
�� − ��′�

��#  
0.0162 < 0.1 

%�&'' 0.6104 Less value is better 
�('&% 0.2356 Less value is better 
��� 0.8928 ≥ 0.5 

 
An illustration of the results obtained for each 
combination studied is given in Table 4. The Q2 
value obtained for all the models are well above 
the stipulated value of 0.5 with equation 1 
showing the highest Q2 values of 0.9636. 
However, the external validation of the models 
showed a wide range of variation in the values of 
R2

pred. The parameter, r2
m(overall), was used which 

penalizes a model for large differences in 
observed and predicted activity. A model may be 
considered satisfactory when r2

m(overall) is greater 
than 0.5. The value of r2

m(overall) takes into 
consideration prediction of both training and test 
set compounds and maintains a balance 
between the values of Q2 and R2

pred. The r2
m(LOO) 

parameter for a giving model indicates the extent 
of deviation of the Q2

LOO predicted activity values 
from the observed ones for the training set 
compounds. This implies that equation 1, despite 
having an acceptable Q2, is capable of 
accurately predicting the activities of the some 
training set molecules and this is reflected in the 
value of r2

m(LOO). Remarkably, equation 1 has the 
maximum Q2 value (0.9737) and r2

m(LOO) value of 
this model is 0.9559. the r2

m(test) parameter 
determines the extent of deviation of the 
predicted activity from the observed activity 
values of test set compounds where the 
predicted activity is calculated on the basis of the 
model developed using the corresponding 
training set. Equation 1 show acceptable values 
of R2

pred and r2
m(test). From these model the 

difference between the value of R2
pred and r2

m(test) 

is very low (less than 0.1) indicating that the 
predicted activity values of the test set 
compounds obtained from the corresponding 
models are very close to the corresponding 
observed activities of the compounds. 
 
The developed models were further validated by 
the process randomization technique. The values 
of R2

r and R2 were determined which were then 
used for calculating the value of R2

p. models with 
R2

p values greater than 0.5 are considered to be 
statistically robust. If the value of R2

p is less than 
0.5, then it may be concluded that the outcome 
of the models is merely by chance and they are 
not at all well predictive for truly external 
datasets. The values of R2

p in equation 1 crossed 
the threshold value of 0.5 and therefore, equation 
1 may be considered to be statistically robust. 
These result suggest that this combination of 
training and test sets is the best one. 
 

3.2 Euclidean Based Applicability Domain 
(AD) 

 
Applicability domain (AD) is the physicochemical, 
structural or biological space, knowledge or 
information on which the training set of the model 
has been developed. The resulting model can be 
reliably applicable for only those compounds 
which are inside this domain. Euclidean based 
application domain helps to ensure that the 
compounds of the test set are representative of 
the training set compounds used in model 
development. It is based on distance scores 
calculated by the Euclidean distance norms. At 
first, normalized mean distance score for training 
set compounds are calculated and these values 
ranges from 0 to 1(0 = least diverse, 1 = most 
diverse training set compound). Then normalized 
mean distance score for test set are calculated, 
and those test compounds with score outside 0 
to 1 range are said to be outside the applicability 
domain. This can also be checked by plotting a 
‘Scatter plot’ (normalized mean distance vs. 
biological activity) including both training and test 
set (Table 7). If the test set compounds are 
inside the domain/area covered by training set 
compounds that means these compounds are 
inside the applicability domain otherwise not 
[25,26]. 
 
The multi-colinearity between the above five 
descriptors were detected by calculating their 
variation inflation factors (VIF), which can be 
calculated as follows: 
 

)*+ =
1

1 − ��
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Where R2 is the correlation coefficient of the 
multiple regression between the variables within 
the model which is defined as: 
 

�� = 1 −
∑./���� − /�0�1��2

�

∑(/�0�1�� − /
��3)�
 

 
If VIF equals to 1, then no inter-correlation exists 
for each variable; if VIF falls into the range of 1–

5, the related model is acceptable; and if VIF is 
larger than 10, the related model is unstable and 
a recheck is necessary [28]. The corresponding 
VIF values of the five descriptors are presented 
in Table 2. As can be seen from this table, all the 
variables have VIF values of less than five, 
indicating that the obtained model has statistical 
significance, and the descriptors were found to 
be reasonably orthogonal. 

 
Table 7. Equation 1 Euclidean based applicability domain (AD) 

 
Compound No. Distance score Mean distance Normalized mean distance 
2 289.95 9.664999 0.53059 
3 288.3358 9.611193 0.505584 
4 288.9239 9.630797 0.514695 
5 287.6763 9.589211 0.495368 
6 287.7724 9.592412 0.496856 
9 288.4801 9.616002 0.507819 
10 289.0854 9.636179 0.517196 
12 288.1643 9.605476 0.502927 
13 288.0949 9.603163 0.501852 
14 288.1314 9.60438 0.502418 
15 288.1231 9.604103 0.502289 
17 272.4481 9.081605 0.25946 
18 320.251 10.67503 1 
19 272.3741 9.079136 0.258312 
20 272.3721 9.07907 0.258282 
21 256.6197 8.553991 0.014253 
24 259.208 8.640268 0.05435 
25 262.6979 8.756595 0.108413 
27 256.8328 8.561094 0.017554 
28 291.715 9.723833 0.557933 
29 258.2923 8.609742 0.040163 
30 258.0338 8.601128 0.03616 
31 258.0615 8.602049 0.036588 
33 281.321 9.377368 0.396915 
35 257.5266 8.584221 0.028302 
36 259.0893 8.63631 0.05251 
38 283.4106 9.44702 0.429285 
40 283.4058 9.44686 0.429211 
42 256.9077 8.563592 0.018715 
43 255.6997 8.523323 0 

Test set 
Compound No. Distance score Mean distance Normalized mean distance 
7 289.1057 9.636858 0.517512 
8 289.9612 9.665373 0.530764 
11 287.7555 9.59185 0.496594 
16 288.3279 9.61093 0.505462 
22 258.2999 8.609997 0.040282 
23 257.4336 8.58112 0.026861 
26 257.0176 8.567254 0.020417 
32 257.6564 8.588546 0.030312 
34 257.8537 8.595122 0.033369 
37 283.4515 9.448382 0.429918 
44 255.7337 8.524457 0.000527 
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Table 8. Specification of entered descriptors in genetic function approximation 
 

Descriptors Definition VIF* p-value** t-value*** 
SsF Sum of atom-type E-State: -F 1.885 2.86E-06 6.0708 
minHBint3 Minimum E-State descriptors of strength for 

potential hydrogen bonds of path length 3 
2.515 6.13E-12 -12.4178 

minHdsCH Minimum atom-type H E-State: =CH- 1.078 3.67E-11 -11.3875 
FPSA-1 PPSA-1 / total molecular surface area 1.670 7.59E-10 9.7793 
RHSA THSA / total molecular surface area  1.010 1.34E-06 -6.3823 
*Variation inflation factor; **p-value was introduced for compare under the confidence level 95%; ***t-test was 

introduced for compare under the confidence level 95% 
 

In order to assess the robustness of the model, 
the Y-randomization test was applied in this 
study [25]. Y-randomization test confirms 
whether the model is obtained by chance 
correlation, and is a true structure–activity 
relationship to validate the adequacy of the 
training set molecules. The steps followed during 
the randomization test are: 
 

(I) repeatedly scrambling the activity data in 
the training set molecules, 

(II) using the randomized data to generate 
QSAR equations, and  

(III) Comparing the resulting scores with the 
score of the original QSAR equation 
generated with non-randomized data. If the 
activity prediction of the random model is 
comparable to that of the original equation, 
the set of observations is not sufficient to 
support the model. 

 

The new QSAR models (after several repetitions) 
would be expected to have low R2 and Q2

LOO 

values (Table 3). If the opposite happens, then 
an acceptable QSAR model cannot be obtained 
for the specific modeling method and data. The 
results of Table 3 indicate that an acceptable 
model is obtained by GA–MLR method, and the 

model developed is statistically significant and 
robust. 
 
3.3 Interpretation of the Selected 

Descriptors 
 
The GFA model is useful in predicting the binding 
affinity of indole � -diketo, diketo acid and 
carboxamide derivatives. The brief descriptions 
of descriptors are shown in Table 2. To examine 
the relative importance as well as the 
contribution of each descriptor in the model, the 
statistical results for the selected descriptors in 
this model are given in Table 3. In this model, a 
Student’s t-test was performed at a confidence 
level of 95% to confirm the significance of each 
descriptor. All the P-values of the descriptors 
were less than 0.05, indicating that the selected 
descriptors were statistically significant at the 
95% level. Moreover, the multi-colinearity of the 
descriptors was evaluated using the variation 
inflation factor (VIF). A VIF value larger than 10 
indicates that a descriptor is highly correlated 
with one or more of the remaining independent 
variables. In this model, all the VIF values were 
less than 2.515, revealing that the descriptors 
were fairly independent of each other. 

 

Table 9. Rtrain, R2
train and Q2

(LOO)train values after several Y-randomization tests 
 

Model Rtrain R2
train Q2

(LOO)train 
Original 0.989045 0.978211 0.963637 
Random 1 0.384344 0.14772 -0.49419 
Random 2 0.444433 0.197521 -0.32954 
Random 3 0.47697 0.2275 -0.21534 
Random 4 0.416674 0.173617 -0.32322 
Random 5 0.382305 0.146157 -0.29027 
Random 6 0.517191 0.267487 -0.11088 
Random 7 0.382771 0.146514 -0.33458 
Random 8 0.403669 0.162949 -0.34735 
Random 9 0.382032 0.145948 -0.38038 
Random 10 0.252255 0.063633 -0.54145 
Random models parameters 
Average Rtrain:   0.4043 
Average R2

train :   0.1679 
Average Q2

(LOO)train :   -0.3367 
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Table 10. The descriptors relevance for the variables used in the model proposed 
 
Variable Abbreviation Occurrences 

in population 
Variable Abbreviation Occurrences 

in population 
NP : pIC50 Y  HB : 

ETA_dEpsilon_D 
X210 161 

M : P-
Area(75) 

X13 553 HD : 
ETA_Shape_P 

X212 119 

N : P-
Area(100) 

X14 88 HM : 
ETA_Beta_ns_d 

X221 182 

O : P-
Area(125) 

X15 119 HN : 
ETA_BetaP_ns_d 

X222 87 

P : Acc.P-
Area(75) 

X16 91 HP : ETA_EtaP X224 111 

U : HBD X21 135 IG : nAtomP X241 115 
AS : ATSm5 X45 116 IM : MDEC-14 X247 84 
BP : C1SP3 X68 62 IQ : MDEC-33 X251 951 
BS : SCH-6 X71 376 JD : nRing X264 404 
BT : SCH-7 X72 67 JE : n5Ring X265 61 
BV : VCH-6 X74 221 JV : WTPT-2 X282 168 
CP : SP-6 X94 377 JZ : PPSA-1 X286 180 
DB : nHBd X106 83 KB : PPSA-3 X288 55 
DU : ndssC X125 108 KC : PNSA-1 X289 118 
EV : SsF X152 903 KE : PNSA-3 X291 307 
EW : minHBd X153 4031 KF : DPSA-1 X292 250 
FA : 
minHBint3 

X157 1561 KH : DPSA-3 X294 363 

FB : 
minHBint4 

X158 68 KI : FPSA-1 X295 279 

FG : 
minHsOH 

X163 337 KL : FNSA-3 X298 854 

FI : 
minHdsCH 

X165 1095 KQ : WNSA-3 X303 61 

FM : 
minaaCH 

X169 87 KT : RPCS X306 101 

FN : 
minaasC 

X170 218 KU : RNCS X307 1359 

FR : minsOH X174 99 KV : THSA X308 270 
FU : minsCl X177 2533 KW : TPSA X309 2112 
   KX : RHSA X310 1913 

 
Because high Q2 values appear to be a 
necessary but not sufficient condition for high 
predictive power, the predictiveness of the model 
was further evaluated using an internal validation 
set and external prediction test set. The 
robustness, predictiveness, and applicability of 
the MLR model were demonstrated by a high Q2 
value (Q2 = 0.8138), internal predictive squared 
correlation coefficient (R2 = 0.9782) (Table 4), 
and predictive squared correlation coefficient 
(R2

pred = 0.8985) (Table 6). The indole �-diketo, 
diketo acid and carboxamide activities predicted 
by the GFA-MLR model are listed in Table 5, and 
Fig. 1 shows the plot of experimental activities 

versus the predicted activities. The model in 
equation 1 indicates that inhibitory activity of 
compounds against HIV-1 IN depends on electro 
topological state atom type and CPSA 
descriptors. Table 10 above shows the descriptor 
relevance for the variables used in the proposed 
model. 
 
The QSAR study revealed that minHBint3, 
minHdsCH, and RHSA descriptors have negative 
contribution to the integrase activity while SsF 
and FPSA-1 have positive contribution to the 
activity. The E-State value for a given non 
hydrogen atom in a molecule is given by its 
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intrinsic state plus the sum of the perturbations 
on that atom by all the other atoms in the 
molecule [29]. If one looks into drug like 
molecules and uses C, N, O, S and the halogens 
as the main building blocks, Kier and Hall use 35 
atom types to calculate E-states. The symbols 
associated with the atom types are s for single 
bond, d for double, t for triple and a for aromatic. 
The attraction and proposed advantage of E-
states over simple counts of the equivalent atom 
types is that E-states values for each atom in a 
given molecule ‘reflect’ the steric and electronic 
effects of the surrounding atoms and as such, 
could be best described as information rich 
atomic descriptors. Therefore, for example, if two 
different molecules have one phenol group, 
simple phenolic OH counts would not 
differentiate between two different substitution 
patterns that the phenolic group might have, 
while E-states would [30]. Electro topological 
state atom type descriptor SsF, represents Sum 
of atom-type E-State: -F; This descriptor 
contributes positively which indicates that 
inhibitory activity of indole �-diketo, diketo acid 
and carboxamide derivatives will increases with 
sum of atom-type E-state: -F. Negative 
contribution of the minHBint3 (Minimum E-State 
descriptors of strength for potential Hydrogen 
Bonds of path length 3) and minHdsCH 
(Minimum atom-type H E-State: =CH-) indicates 
that inhibitory activity of indole � -diketo, diketo 
acid and carboxamide derivatives will increases 
with decrease of  the molecular descriptors. 
 

The charged partial surface area, or CPSA 
descriptors were originally designed for use in 
structure-physical relationship studies to capture 
information about the features of molecules 
responsible for polar intermolecular interactions. 
Since their development, they have found 
applications in a broad variety of both structure-
property and structure-activity relationship 
studies. The CPSA descriptors have been found 
to be practically useful in the study of acute 
aquatic toxicity where they appear to provide an 
alternative to LUMO energy level measures for 
describing global and local electrophilicity in 
cases of non-covalent molecular interactions 
[31]. CPSAs, were found to be necessary to 
provide separation between reactivity patterns for 
agonists and antagonists, all having high binding 
affinity to estrogen receptor [32]. CPSA 
descriptors FPSA-1, define as Partial positive 
surface area -- sum of surface area on positive 
parts of molecule/ total molecular surface area 
contribute positively which indicates that 
inhibitory activity of indole �-diketo, diketo acid 
and carboxamide derivatives will increases with 
FPSA-1. RHSA, represent Sum of solvent 
accessible surface areas of atoms with absolute 
value of partial charges less than 0.2/ total 
molecular surface area; this descriptors 
contribute negatively indicates that increase in 
number of aromatic bonds in the molecule are 
not conducive to the integrase activity of indole 
� -diketo, diketo acid and carboxamide 
derivatives.

 

 
 

Fig. 1. Scatter plot (Training set) of actual activities vs. the predicted activities 
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Fig. 2. Scatter plot (Test set) of Actual activities vs. the predicted activities 
 

 
 

Fig. 3. The predicted pIC50 against the observed values for the training and test set 
 

 
 

Fig. 4. The residuals vs. observed pIC50 values for the training and test sets 
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Fig. 5. plot of normalized mean distance vs. observed pIC50 for training and test set 
 
4. CONCLUSION 
 
The aim of the present work was to develop a 
QSAR study and predict the anti-HIV activities of 
indole � -diketo, diketo acid and carboxamide 
derivatives. Spartan’14 and PaDEl-Descriptor 
Software and selected by Genetic Function 
Approximation. The built GFA model was judged 
systematically (internal and external validations), 
and all the validations indicate that the QSAR 
model we built is robust and satisfactory. 
Selection of five variables showed that Sum of 
atom-type E-State: -F, Minimum E-State 
descriptors of strength for potential Hydrogen 
Bonds of path length 3, Minimum atom-type H E-
State: =CH-, PPSA-1 / total molecular surface 
area, and THSA / total molecular surface area of 
the molecule play a main role in the anti-HIV 
activity of the compounds. 
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